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Abstract

Combinatorial markets where bids can be submit-
ted on bundles of items can be economically de-
sirable coordination mechanisms in multiagent sys-
tems where the items exhibit complementarity and
substitutability. There has been a surge of recent
research on winner determination in combinatorial
auctions. In this paper we study a wider range
of combinatorial market designs: auctions, reverse
auctions, and exchanges, with one or multiple units
of each item, with and without free disposal. We
first theoretically characterize the complexity. The
most interesting results are that reverse auctions
with free disposal can be approximated, and in all
of the cases without free disposal, even finding a
feasible solution isNP-complete. We then ran ex-
periments on known benchmarks as well as ones
which we introduced, to study the complexity of
the market variants in practice. Cases with free dis-
posal tended to be easier than ones without. On
many distributions, reverse auctions with free dis-
posal were easier than auctions with free disposal—
as the approximability would suggest—but inter-
estingly, on one of the most realistic distributions
they were harder. Single-unit exchanges were easy,
but multi-unit exchanges were extremely hard.

1 Introduction
Combinatorial markets can be used to reach economically ef-
ficient allocations of goods, services, tasks, resources, etc.,
in multiagent systems even when the agents’ valuations for
bundles of items are not additive. Some items can be comple-
mentary, and others can be substitutes.

While combinatorial markets have major economic ad-
vantages, they can be computationally complex to clear.
There has been a recent surge of interest in developing
combinatorial clearing algorithms[Rothkopf et al., 1998;
Sandholm, 1999; Fujishimaet al., 1999; Lehmannet al.,
1999; Sandholm and Suri, 2000; Anderssonet al., 2000;
Hoos and Boutilier, 2000; Sandholmet al., 2001; Sandholm
and Suri, 2001; de Vries and Vohra, 2000]. However, the
bulk of this work has focused on single-unit combinatorial
auctions with free disposal, with some work on multi-unit
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combinatorial auctions with free disposal[Sandholm, 2000;
Sandholm and Suri, 2000; Leyton-Brownet al., 2000b;
Gonen and Lehmann, 2000]. Other generalizations have also
been discussed, but their complexity has not been analyzed
theoretically or experimentally[Sandholm, 2000; Sandholm
and Suri, 2000].

In this paper we study the complexity of the main other
variants of combinatorial markets. We study auctions, reverse
auctions, and exchanges. In each settings we study the single-
unit as well as the multi-unit case. We analyze each of these
variations with and without free disposal.1 This leads to3�
2�2 = 12 important settings, of which only2 have received
significant attention so far.

We first define the different market types, and analyze the
complexity of winner determination and approximation theo-
retically. We then compare the types experimentally. Finally,
we discuss shadow prices in auctions and exchanges.

2 Classes of Combinatorial Markets
In this section we introduce different combinatorial market
types, and discuss the complexity of winner determination
from a theoretical perspective.

2.1 Single-Unit Auctions
The most basic combinatorial auction, and the type that has
received most of the attention in previous work[Sandholm,
1999; Fujishimaet al., 1999; Sandholm and Suri, 2000], is a
single-unit combinatorial auction with free disposal.

Definition 1 The auctioneer has a set of items,M =

f1; 2; : : : ;mg, to sell, and the buyers submit a set of bids,
B = fB1; B2; : : : ; Bng. A bid is a tupleBj = hSj ; pji,
whereSj � M is a set of items andpj � 0 is a price. The
binary combinatorial auction winner determination problem
(BCAWDP) is to label the bids as winning or losing so as to
maximize the auctioneer’s revenue under the constraint that
each item can be allocated to at most one bidder:

max

nX

j=1

pjxj s.t.
X

jji2Sj

xj � 1; i = 1; 2; : : : ;m

xj 2 f0; 1g
1We use a strong version of theno free disposalcase. If there is

no free disposal, the sellers have to sell everything and the buyers
cannot accept anything extra beyond what they bid on. In the future,
we plan to also study the case where disposal is neither free nor
impossible, but rather between these two ends of the spectrum. For
example, disposal could have a predetermined cost.



If there is no free disposal (auctioneer is not willing to keep
any of the items, and bidders are not willing to take extra
items), an equality is used in place of the inequality.

By now it is well known that (the decision version of)
BCAWDP with free disposal (even with integer prices) is
NP-complete[Rothkopf et al., 1998]. It cannot even be
approximated to a ratio ofn1�� in polytime (unlessP =

ZPP)—as shown in[Sandholm, 1999] using the inapprox-
imability of maximum clique[Håstad, 1999]. However, find-
ing a feasible solution is trivial: even any bid alone would
constitute a feasible solution.

2.2 Multi-Unit Auctions
When there are multiple indistinguishable goods for sale, it
is usually desirable (from a bid compactness and winner de-
termination complexity perspective) to represent these goods
as multipleunits of a single item, rather than as multiple
items. Different items can have multiple units each, where
units of one item are indistinguishable but units of different
items are distinguishable. This representation allows a bid-
der to place a single bid requesting the amount of each item
that he wants, instead of placing separate bids on the poten-
tially enormous number of combinations that would amount
to those numbers of units of those items. An auction that
allows this type of bidding is called amulti-unit combinato-
rial auction. They have been used, for example, in theeMe-
diator ecommerce server prototype[Sandholm, 2000], and
recent research has studied winner determination in this con-
text [Sandholm and Suri, 2000; Leyton-Brownet al., 2000b;
Gonen and Lehmann, 2000]. Multi-unit auctions have many
potential real-world applications including bandwidth alloca-
tion and electric power markets. The winner determination
problem for multi-unit auctions follows.

Definition 2 The auctioneer has a set of items,M =

f1; 2; : : : ;mg, to sell. The auctioneer has some number of
units of each item available:U = fu1; u2; : : : ; umg; ui 2
<+. The buyers submit a set of bids,B = fB1; B2; : : : ; Bng.
A bid is a tupleBj = h(�1j ; �

2
j ; : : : ; �

m
j ); pji, where�kj � 0

is the number of units of itemk that the bid requests, and
pj � 0 is the price. Thebinary multi-unit combinatorial auc-
tion winner determination problem (BMUCAWDP)is to la-
bel the bids as winning or losing so as to maximize the auc-
tioneer’s revenue under the constraint that each unit of an
item can be allocated to at most one bidder:

max

nX

j=1

pjxj s.t.
nX

j=1

�ijxj � ui; i = 1; 2; : : : ;m

xj 2 f0; 1g

If there is no free disposal (auctioneer is not willing to keep
any units, and bidders are not willing to take extra units), an
equality is used in place of the inequality.

Proposition 2.1 Consider BMUCAWDP with free disposal.
The decision problem isNP-complete. The optimization
problem cannot be approximated to a ration1�� in polyno-
mial time unlessP = ZPP. Both claims hold even with
integer prices and integer units.

PROOF. Immediate from theNP-completeness and inap-
proximability of BCAWDP since that is a special case (ui =

1 for all i 2 f1; 2; : : : ;mg). 2

Again, finding a feasible solution is trivial: even any bid
alone would constitute a feasible solution.

2.3 Reverse Auctions
In many market scenarios, for example in procurement, there
is a buyer who wants to obtain some goods at the lowest pos-
sible cost, and a set of sellers who can provide the goods.
The buyer can hold areverse auctionto try to obtain the
goods. Again, if there is complementarity or substitutabil-
ity between the goods, acombinatorialreverse auction can
be beneficial. Each seller submits “asks” that say how much
the seller asks for each bundle of goods she can provide. A
single-unit combinatorial reverse auction is a special case of a
multi-unit combinatorial reverse auction, so we only present
the latter formally.

Definition 3 The auctioneer (buyer) has a set of items,
M = f1; 2; : : : ;mg that she wishes to obtain. She
specifies how many units of each item she wants:U =

fu1; u2; : : : ; umg; ui 2 <
+. The sellers submit a set of

asks,A = fA1; A2; : : : ; Ang. An ask is a tupleAj =

h(�1j ; �
2
j ; : : : ; �

m
j ); pji, where�kj � 0 is the number of units

of itemk offered by the ask. The ask price ispj � 0. The
binary multi-unit combinatorial reverse auction winner deter-
mination problem (BMUCRAWDP)is to label the asks as
winning or losing so as to minimize the auctioneer’s cost un-
der the constraint that the auctioneer receives all of the units
of items that she is asking:

min

nX

j=1

pjxj s.t.
nX

j=1

�ijxj � ui; i = 1; 2; : : : ;m

xj 2 f0; 1g

If there is no free disposal (sellers are not willing to keep any
units of their winning asks, and the buyer is not willing to take
extra units), an equality is used in place of the inequality.

Proposition 2.2 With free disposal, (the decision version of)
BMUCRAWDP isNP-complete both in the single-unit and
the multi-unit case. This holds even for integer prices and
integer units.

PROOF. The decision version of BMUCRAWDP (even in the
multi-unit case) is inNP because the solution can easily be
checked in polynomial time. To prove the theorem, we then
only need to show that the single-unit case isNP-hard. We
observe that the single-unit case is exactly the same problem
as WEIGHTED SETCOVERING.2 Since WEIGHTED SET
COVERING isNP-complete, the single-unit combinatorial
reverse auction isNP-complete as well. 2

Interestingly, unlike in a single-unit combinatorial auction,
in a single-unit combinatorial reverse auction the winners can
be approximated!

Proposition 2.3 In the single-unit case with free disposal,
BMUCRAWDP (with integer units and prices) is approx-
imable in polynomial time within a1 + logm0 factor of op-
timum, wherem0 is the largest number of items that any one
bid contains.

2Note that this is a different problem than WEIGHTED SET
PACKING, which is analogous to BCAWDP with free disposal.



PROOF. The following greedy algorithm is known to pro-
duce an(1+logn0)-approximation for the WEIGHTED SET
COVERING problem[Hochbaum, 1997].

The input for the algorithm is the set of asksA =

fA1; A2; : : : ; Ang and the set of itemsM = f1; 2; : : : ;mg.

Algorithm 2.1

If some item is included in no ask, return INFEASIBLE.

C  ;

cost 0

WhileC 6= M do
j�  minjjC[Sj 6=C

pj
jSj j

cost cost+ pj�

C  C [ Sj�

Return cost

2

With free disposal, finding a feasible solution (if one exists)
is even more trivial. For example, one can simply accept all
the bids. If this solution is not feasible, then no other solution
is either.

2.4 Exchanges

In markets with many buyers and many sellers, exchanges are
a natural choice for a market mechanism. In acombinatorial
exchange[Sandholm, 2000; Sandholm and Suri, 2000], the
trades that the market determines to occur can involve mul-
tiple buyers and multiple sellers each. Unlike auctions and
reverse auctions, there is no auctioneer in a combinatorial ex-
change. Rather the participants in the exchange are allowed to
both buy and sell items, or just buy or just sell. Both auctions
and reverse auctions are special cases of exchanges. Also,
the single-unit exchange is a special case of the multi-unit
exchange (where each demand�kj 2 f�1; 0; 1g) so we only
present the multi-unit exchange formally.

Definition 4 The administrator of an exchange determines
which items will be available in the exchange,M =

f1; 2; : : : ;mg. Only these items may be included in the
bids and asks in the exchange. A bid3 in this setting is
Bj = h(�1j ; �

2
j ; : : : �

m
j ); pji, where�kj 2 < is the requested

number of units of itemk, andpj 2 < is the price. A positive
�kj represents buying and a negative�kj means selling. A pos-
itive pj represents bidding while a negativepj means asking.
Thebinary multi-unit combinatorial exchange winner deter-
mination problem (BMUCEWDP)is to label the bids as win-
ning or losing so as to maximize surplus under the constraint
that demand does not exceed supply:

max

nX

j=1

pjxj s.t.
nX

j=1

�ijxj � 0 i = 1; 2; : : : ;m

If there is no free disposal (buyers are not willing to take extra
units, and sellers are not willing to keep any units of their
winning bids), an equality is used in place of the inequality.

3We will often simply refer to “bids” rather than “bids” and
“asks” when the distinction between the two is unnecessary.

Proposition 2.4 Consider BMUCEWDP with free disposal
(in the single- or multi-unit case). The decision problem is
NP-complete. The optimization problem cannot be approxi-
mated to a ration1�� in polynomial time unlessP = ZPP.
Both claims hold even with integer prices and integer units.

PROOF. Immediate from theNP-completeness and inap-
proximability of BCAWDP since that is a special case.2

2.5 Lack of Free Disposal
Free disposal refers to the property that each party prefers
(possibly not strictly) more to less. In other words, for each
item, there is at least one party in the market who can dispose
of any number of units of that item for free. Each winner
determination problem discussed so far can be changed to re-
flect the case where items do not exhibit free disposal by sim-
ply changing the inequalities in the integer programming for-
mulations to equalities. Despite the apparent similarities in
the integer programming formulations for markets with and
without free disposal, the problems are actually quite differ-
ent.

In general, an auction cannot be formulated as a reverse
auction (e.g., by simply changing signs) with the expectation
that the solution for the reverse auction will be the same as
for the auction. This is because in the reverse auction we
are looking for lower priced bids, while in the auction we are
looking for higher priced bids. The winning bid sets differ
even if prices were negated. In the case of no free disposal
(even without negating prices), the set of feasible solutions in
an auction is the same set as in a reverse auction, but the set
of optimal solutions is generally different. As we will show
in the experiments, the time required to solve auctions and
reverse auctions without free disposal can be very different.

We now characterize the complexity of the winner deter-
mination problem without free disposal.

Theorem 2.5 Consider the winner determination problem in
a combinatorial auction (single-unit or multi-unit), combina-
torial reverse auction (single-unit or multi-unit), or a com-
binatorial exchange (single-unit or multi-unit). Without free
disposal, even finding a feasible solution isNP-complete
(even with integer prices and integer units).

PROOF. Clearly these problems are inNP because feasibil-
ity can easily be checked in polynomial time. So, the beef is
to prove that they areNP-hard. We do this by showing that
the following special case is alreadyNP-hard. Let every bid
have exactly three items, and price 1. Let the number of items
be a multiple of 3. Now, if we had a polynomial time algo-
rithm to find a feasible solution for this problem, we could
use that algorithm directly to solve the EXACT COVER BY
3-SETS problem[Garey and Johnson, 1979], which isNP-
complete. 2

Now, let us go through an example to see how likely it is
that a randomly chosen problem instance is feasible. Con-
sider an auction (or a reverse auction) where each bid is ran-
domly assigned� items without replacement (and no dupli-
cate bids are allowed). Modulo pricing, there are

�
m
�

�
possi-

ble bids. Thus there are
�
(m�)
n

�
problem instances. Now let

us compute the number of feasible instances. In a feasible
solution, each item is allocated to one bid. Consider a set of



winning bids, in some particular order. The first bid’s first
item could be any ofm items, the second item could be any
one of the remainingm�1, etc. The first bid’s last item could
be any one ofm��+1. The second bid’s first item could be
any one of the remainingm � �, etc. So, together there are
m! feasible instances. (Note that this is independent ofn and

�.) So, the fraction of instances that are feasible ism!=
�
(m�)
n

�
.

Corollary 2.1 Without free disposal, the winner determina-
tion problem in a combinatorial auction (single-unit or multi-
unit), combinatorial reverse auction (single-unit or multi-
unit), or a combinatorial exchange (single-unit or multi-
unit) cannot even be approximated in polynomial time (unless
P = NP), even with integer prices and integer units.

PROOF. Immediate from Theorem 2.5 2

In the rest of the paper we present experiments to see how
hard these variants of the winner determination problem are
in practice.

3 Experiments
We designed the experiments so that each one would help il-
lustrate the computational differences between a feature of an
auction or exchange. We compared auctions and reverse auc-
tions to see whether the fundamental difference in approxima-
bility shows up in practice. We compared free disposal and
no free disposal. We also showed the hardness of exchanges.
In our experiments, the units are integers, but the prices are
reals.

All of the tests were run on a Pentium III 933 MHz pro-
cessor, with 512 MB RAM. The test machine was running
Linux 2.2. The algorithm that was used to solve the prob-
lems was CPLEX 7.0, a general-purpose mixed integer pro-
gramming package. CPLEX has recently been used to bench-
mark winner determination in the context of combinatorial
auctions[Anderssonet al., 2000]. It is basically an A* search
algorithm that uses, at every node, a linear programming (LP)
relaxation of the remaining subproblem to construct a heuris-
tic upper bound. If the LP happens to return an integer so-
lution, that is the optimal solution to that subproblem, so
the subtree rooted at that node need not be searched. Quite
frequently this occurs already at the root, in which case no
search is conducted[Sandholmet al., 2001].

In all of our experiments, for any given parameter setting,
it took CPLEX significantly longer to find an optimal solution
than it took to prove infeasibility. In the cases with free dis-
posal, the problem was never infeasible (infeasibility could
only happen if in a reverse auction there are not enough units
of some item in all of the bids combined). In the cases without
free disposal, the constraints are all equalities, and CPLEX is
quite effective at using them algebraically to reduce search.
On distributions where CPLEX tended to find an integer so-
lution with LP directly (and search was therefore not needed),
CPLEX also was able to prove infeasibility without search.
On the other hand, on distributions where CPLEX conducted
search to find an optimal solution, it tended to also require
search to prove infeasibility. To keep the times comparable,
in all of the experiments, we only report execution times for
feasible instances.

We ran experiments on several benchmark distributions.
All of the values reported in the graphs are means over 50

instances.

3.1 Single-Unit Auctions and Reverse Auctions
We used the following common benchmark distributions for
single-unit auctions[Sandholm, 1999]:

� Random: For each bid, pick the number of items ran-
domly from 1; 2; :::;m. Randomly choose that many
items without replacement. Pick the price randomly
from [0; 1].

� Weighted random: As above, but pick the price be-
tween 0 and the number of items in the bid.

� Uniform: Draw the same number of randomly chosen
items for each bid. Pick the prices from[0; 1].

� Decay: Give the bid one random item. Then repeatedly
add a new random item with probability� until an item
is not added or the bid includes allm items. Pick the
price between 0 and the number of items in the bid. In
the tests we used� = :75 since the graphs in[Sandholm,
1999] show that this setting leads to the hardest (at least
for their algorithm) instances on average.

Previously these distributions have only been used for
single-unit auctions with free disposal. We use these distri-
butions to benchmark reverse auctions as well. When using
theuniform distribution with no free disposal, we show ex-
periments where the bid size is a factor of the total number of
items—otherwise there is no feasible solution.

It is clear from Figure 1 that there is a complexity differ-
ence between auctions with and without free disposal. In
fact, CPLEX takes two orders of magnitude longer to solve
no free disposal auctions and reverse auctions on theran-
dom distribution. Although the difference is less dramatic
on theweighted randomdistribution, it is still present. On
both random and weighted random, reverse auction with
free disposal rarely require search, and if they do, only a
few nodes. Auctions with free disposal require search a bit
more often, and use a somewhat larger number of nodes when
search does occur. In free disposal settings, auctions and
reverse auctions lead to search almost every time, and the
search trees are large.
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Figure 1: Run times on therandom andweighted random
distributions.

Another interesting thing to note is that auctions without
free disposal almost consistently take longer to solve than re-
verse auctions without free disposal for these two distribu-
tions. The easiest market type to solve was the reverse auc-
tion with free disposal. This is not surprising in light of its
approximability.

In Figure 2 we again see the clear difference in execution
time with and without free disposal. What is surprising here
is that in thedecaydistribution, reverse auctions take much



longer than standard auctions, even in the case with free dis-
posal. This is the exact opposite of what we saw in Figure
1 and what we see on theuniform distribution. That shows
that the theoretical approximability does not always translate
to shorter solution times when going for an optimal solution.
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Figure 2:Run times on thedecayanduniform distributions.

On theuniform distribution, for auctions and reverse auc-
tions with no free disposal, there are no instances represented
for bid size 15. That is because all of those instances were
infeasible.

3.2 Multi-Unit Auctions and Reverse Auctions
We ran multi-unit auction experiments on two distributions.
We used the same distributions for reverse auctions (by negat-
ing the prices of the bids)—a setting on which we have not
seen any benchmark results before.

� Decay-decay:First assign the number of units for each
item i: let item i have 1 unit. Repeatedly add another
unit with probability�0. Then, give the bid one random
item. Then repeatedly add a new random item (without
repetition) with probability�1. Finally, for each item
i in the bid, give that item quantity 1, then repeatedly
add 1 to the quantity with probability�2. If the quan-
tity is greater thanui, then set the quantity equal toui.
The price is computed by taking a random number be-
tween and0 and1 and multiplying by the total number
of units in the bid. (A slightly different form of this dis-
tribution appeared in[Leyton-Brownet al., 2000b].) We
used�0 = :99, and varied�1 and�2.

� CATS multipaths: This distribution models what might
happen in an auction such as network bandwidth alloca-
tion [Leyton-Brownet al., 2000a]. As far as we know
there have not been any performance results published
for this distribution.

In each of the threedecay-decaygraphs below we see that
reverse auctions with free disposal are routinely solved the
fastest. Reverse auctions without free disposal are the slow-
est. In auctions, free disposal is only slightly faster than no
free disposal. Before we ran these experiments we thought
that auctions and reverse auctions without free disposal would
have the same characteristics because their integer program-
ming formulations are so similar. We conjecture that a spe-
cialized algorithm could mitigate the difference between the
two. In any case, all of these instances were easy. For exam-
ple at�1 = :6; �2 = :9, the LP solver of CPLEX returned in-
teger solutions up front (and therefore, no search was needed)
on 74% of the reverse auctions with free disposal, on 52% of
the auctions with free disposal, on 50% of the auctions with-
out free disposal, and on 22% of the reverse auctions without
free disposal.
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Figure 3: Run times ondecay-decayfor �1 2 f:4; :6; :8g,
and onCATS multipaths.

Without free disposal (and in reverse auctions even with
free disposal), the instances fromCATS multipaths were al-
most all infeasible. On auctions with free disposal, Figure 3
shows that CPLEX’s execution time grows rapidly with the
number of bids. We observed that with as few as 2,000 bids,
the main memory of our test machine could get exhausted, re-
sulting in very poor performance due to paging. Clearly there
is room for improvement in scalability on this distribution.

3.3 Single- and Multi-Unit Exchanges

We have not seen any benchmarks on exchanges before.
Therefore, we introduce a new benchmark distribution which
is similar to thedecay-decaydistribution for multi-unit auc-
tions.

� Exchange decay-decay:For each bid, assign it one
item. Repeatedly add an additional item with probabil-
ity �1. For each itemi in the bid, assign one initial unit
and repeatedly add an additional unit of that item with
probability�2. With probability:5, negate the quantity
of the item to indicate selling the item. The price is a
random number between0 and1, multiplied by the net
number of units in the bid (which is negative as often
as it is positive). This distribution yields a single-unit
exchange when�2 = 0.

Figure 4 (left) shows that free disposal makes almost no
difference in single-unit exchanges (for any value of�1). The
graph on the right shows that CPLEX scales quite well (when
�1 = :6).
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However, CPLEX scales extremely poorly on multi-unit
exchanges. Even with just 10 items and 100 bids, it takes
a long time. As the number of bids increases further, the
run time increases extremely rapidly. CPLEX quickly be-
comes unusable for the harder cases, specifically where�1 =

�2 = :8. Figure 5 shows that the complexity increases dras-
tically in both�1 and�2, i.e., when each bid specifies sup-
ply and demand on a large number of items and units. Both
with and without free disposal, the run time increasessuper-
exponentiallyin those parameters. Parameter�1 is especially
critical, as shown by the run time difference between Figure
5 Left and Figure 5 Right.

0.001

0.01

0.1

1

0.2 0.4 0.6 0.8

T
im

e 
(s

)

α2

Multi-unit exchange decay-decay (α1=.4)

No Free Disposal

Free Disposal

100 bids, 10 items

0.01

0.1

1

10

100

1000

0.2 0.4 0.6 0.8

T
im

e 
(s

)

α2

Multi-unit exchange decay-decay (α1=.8)

No Free Disposal

Free Disposal

100 bids, 10 items

Figure 5:Run times on theexchange decay-decaydistribu-
tion with multi-unit items.

Figure 6 shows how run time increases with the number of
bids (for�1 = �2 = :6). Again, CPLEX scales very poorly,
both with and without free disposal.
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4 Shadow Prices
Consider the LP relaxation of a combinatorial auction:

LP

max

nX

j=1

pjxj

X

jji2Sj

�
i

jxj � 1; i 2 f1::mg

0 � xj � 1

DUAL

min

mX

i=1

yi

X

i2Sj

yi � pj ; j 2 f1::ng

yi 2 <

The valueyi can be thought of as the “price” of itemi,
which is an upper bound on how much that item will actu-
ally contribute to revenue. Theseshadow pricescan be very
useful. For example, they can be used to give bidders rough
quotes during an open-cry (e.g., ascending) auction. They can
also be used in bid ordering heuristics during search. Bid or-
dering can have a major impact on speed (mainly due to better
pruning if good solutions are found early)[Sandholm, 1999;

Fujishimaet al., 1999; Sandholm and Suri, 2000; Gonen and
Lehmann, 2000; Sandholmet al., 2001]. A host of such
heuristics could be devised. The main idea is that a bid is less
valuable if it uses a large number of items with high shadow
prices, or if its price is far less than the sum of the shadow
prices of the bid’s items. As an example, search could always

branch on the bid with the highest value of
pj�
P

i2Sj
yi

log(
P

i2Sj
yi)

.

This, and certain other bid ordering heuristics, were recently
experimentally shown to have good average case speed in
single-unit combinatorial auctions[Sandholmet al., 2001].

As we now show, unfortunately combinatorialexchanges
don’t generally have meaningful shadow prices—leading to
the need to construct other types of heuristics. Consider the
LP formulations for exchanges with free disposal:

LP

max

nX

j=1

pjxj

X

jji2Sj

�
i

jxj � 0; i 2 f1::mg

0 � xj � 1

DUAL

min

mX
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Since the right hand sides of the inequalities in the LP are
all zeroes, the objective value of the DUAL problem will al-
ways be zero. The shadow prices can often be increased with-
out bound without compromising optimality of the DUAL.
For example, consider a simple exchange instance:

M = f1; 2g Items

B1 = hf1;�1g; 5i Bid1

B2 = hf�1; 1g;�3i Bid2

The LP and DUAL problems are:

LP

max 5x1 � 3x2

x1 � x2 � 0

�x1 + x2 � 0

0 � x1; x2 � 1

DUAL

min 0y1 + 0y2

y1 � 5

y2 � �3

yi 2 <

Now, y1 andy2 can be increased without bound, invalidat-
ing any information these “shadow prices” could provide.

Without shadow prices, different bid ordering heuristics are
needed. One possible choice is to branch on the bid that has
the highestxj value in the LP (always0 � xj � 1). The
idea is that the more of the bid that is accepted in the LP,
the more likely it is to be competitive. We are encouraged
by the fact that we have seen experimentally that this type of
heuristic works well in practice for single-unit combinatorial
auctions[Sandholmet al., 2001]. We plan to explore variants
of it to tackle the drastic complexity (as uncovered by our
experiments) that combinatorial exchanges encompass.

5 Conclusions
We showed how different features of a combinatorial market
affect the complexity of determining the winners. We studied



auctions, reverse auction, and exchanges, with one or multi-
ple units of each item, with and without free disposal. We
analyzed the complexity and approximability of winner de-
termination theoretically. The most interesting results were
that reverse auctions with free disposal can be approximated,
while in all of the cases with free disposal, even finding a
feasible solution isNP-complete.

We then studied the practical clearing time experimentally
using a general-purpose mixed integer program solver on a
variety of known benchmarks as well as ones which we in-
troduced. As expected, cases with free disposal tended to be
easier than ones without. On many distributions, reverse auc-
tions with free disposal were easier than auctions with free
disposal—as the approximability result would suggest—but
interestingly, on one of the most realistic distributions they
were harder. Single-unit exchanges were easy, but multi-unit
exchanges were extremely hard. This suggests that faster,
more specialized, algorithms are called for to scale winner
determination to exchanges in practice. Finally, we discussed
the uses of shadow prices in auctions and showed that mean-
ingful shadow prices do not generally exist in exchanges—
leading to the need to devise other types of (bid ordering)
heuristics.
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