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Abstract

We construct an ascending auction for heterogeneous objects by
applying a primal-dual algorithm to a linear program that represents
the efficient-allocation problem for this setting. The auction assigns
personalized prices to bundles, and asks bidders to report their pre-
ferred bundles in each round. A bidder’s prices are increased when he
belongs to a “minimally undersupplied” set of bidders. We consider
this concept to be the natural generalization of an “overdemanded”
set of objects, introduced by Demange et al. (1986) for the one-to-one
assignment problem.

Under a submodularity condition, the auction implements the Vick-
rey-Clarke-Groves outcome; we show that this type of condition is
somewhat necessary to do so. When classifying the ascending-auction
literature in terms of their underlying algorithms, our auction fills a
gap in that literature. We relate our results to the recent work of
Ausubel and Milgrom (2002).
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1 Introduction

Though much of auction theory has developed in the context of sealed-bid
auctions, there are practical arguments (Cramton, 1998) favoring the use of
“ascending” auctions. For example, such dynamic procedures may create
more transparency in the auctioneer’s methods, bidders may reveal less pri-
vate information, communication and computation costs may be decreased,
etc. These arguments are supported by the circumstantial evidence that the
second-price (Vickrey) sealed-bid auction is unknown to many laypersons in
that form, while its ascending version—the English auction—is commonly
known.

While it is easy to see that the English auction dynamically implements
the second-price auction of a single object, ascending counterparts may be
less obvious in other environments. Indeed, previous works in the litera-
ture have derived such generalizations for special cases, as we discuss below.
In this paper, we consider the general case in which an auctioneer wishes
to sell a set of heterogeneous, indivisible objects to bidders with possibly
non-additive valuations. We derive what we consider to be the appropriate
generalization of the English auction1 for this model by using a method sug-
gested by Bikhchandani et al. (2002). Specifically, we formulate the efficient
object-assignment problem as a particular linear program. Afterwards, we
examine an algorithm that is used to solve such linear programs, and show
how it can be interpreted as an ascending auction.

Generalizing the English Auction

There are at least two natural ways in which the English auction can be gen-
eralized to other environments, depending on how one interprets the outcome
of a second-price auction in the single-object case.

In one interpretation, the price paid by the winner can be viewed as a
Walrasian price: when everyone is offered the object at this price, every bid-
der can make a purchase decision in a way such that the market “clears.”
That is, only one bidder wishes to consume the object.2 Under this interpre-
tation, a generalization of the English auction should terminate in “minimal
Walrasian prices” that support the efficient assignment of objects.

1It may be more accurate to say that we generalize the Japanese (button) auction.
2More technically, at most one bidder strictly wishes to, and at least one weakly wishes

to. The second-price auction ends at the minimal such price.
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In the second, the price can be interpreted as the amount of surplus the
winning bidder takes away from the other bidders by receiving the object.
This more abstract interpretation leads to the general concept of the Vickrey–
Clarke–Groves (VCG) sealed-bid auction. In more general situations, a VCG
auction makes efficient allocation decisions and charges bidders the amount
by which they impose a surplus loss on the other bidders. Under this inter-
pretation, a generalization of the English auction should terminate in “VCG
prices” that support the efficient assignment.

While both generalizations involve efficient object-assignments, Walrasian
and VCG payments typically differ in more general settings. In the assign-
ment problem, however, they are equivalent. In this setting (involving hetero-
geneous objects, where bidders consume at most one object), Demange et al.
(1986) construct an ascending auction which results in VCG (equivalently,
minimal Walrasian) payments. In this auction, bidders declare which objects
they prefer at current prices, and prices are increased on “overdemanded”
sets of objects—objects which are outnumbered by the bidders who require
them.

In contrast, even for the specialized setting in which all objects being sold
are identical (i.e. homogeneous), Walrasian prices and VCG payments need
not coincide. Ausubel (2002) has designed an ascending auction which results
in VCG payments for this case. On the other hand, the ascending auction
that produces minimal Walrasian prices for this case (under the assumption
of sincere bidding) is the well known uniform-price auction.

To better understand the differences between the VCG and Walrasian
interpretations, it is useful to think of an ascending auction as an algorithm
which optimizes the use of the auctioneer’s resources.

A Systematic Approach

In linear programming problems, the dual variable of a constraint represents
the increase in value which could be obtained by relaxing that constraint. A
bidder’s profit in a VCG auction is the increase in “value” (of the objects)
that can be attributed to that bidder’s presence. Bikhchandani and Ostroy
(2002) relate these two observations by formulating the efficient-assignment
problem as a linear program whose dual variables yield the bidders’ profits
in a VCG auction (when a certain condition is satisfied).

We take this idea one step further by interpreting a primal-dual algorithm—
used to solve such linear programs—as an ascending auction for the heteroge-
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neous object case, when bidders may have non-additive valuation functions.
This “recipe” for designing auctions, briefly outlined by Bikhchandani et al.
(2002), is as follows.

1. Formulate the efficient-assignment problem as a linear program. By
doing this appropriately (a là Bikhchandani and Ostroy, 2002) dual
variables can be interpreted as the payments made by bidders and/or
the surplus they receive.

2. Formulate a primal-dual algorithm for this linear program.

3. Interpret the algorithm as an auction.

We perform the first step in Section 2. The dual of our linear program
provides bidder-specific prices for bundles of objects. In Section 3 we show
how the primal-dual algorithm lends itself to an auction interpretation. In
particular, it asks bidders to list the bundles of objects they demand at
current prices, and then adjusts those prices accordingly. In Section 4 we
discuss the situations in which our generalization of the English auction in
fact implements VCG payments.

It is natural to wonder whether this recipe can be used by replacing, in
Step 2, the primal-dual algorithm with some other iterative algorithm used
to solve linear programs. For example, a subgradient algorithm also works
by adjusting dual variables; could it also yield an ascending auction? In
Section 5 we show that a subgradient algorithm for this problem can be
interpreted as the auction described by Ausubel and Milgrom (2002).

More generally, if one examines the special cases that have appeared in
the previous literature, it appears that many of the well-known ascending
auctions can be derived from either a primal-dual or subgradient algorithm.
Table 1 categorizes such auctions, where the underlying algorithm operates
on optimization problems whose variables correspond to prices.3

One difference between the two algorithms is the information they uti-
lize at each iteration. In auction terms, a primal-dual algorithm requires a
bidder to report his entire demand correspondence at each iteration, while a

3Notable exceptions to this particular classification are the works of Ausubel (2000) and
Parkes and Ungar (2002). While those works can certainly be related to such algorithms
(e.g. there is explicit use of primal-dual algorithms in the latter paper), they operate with
the use of additional parameters (variables) which, in our view, cannot be interpreted as
“ascending prices.” See the end of Section 4.2.
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Environment Primal-Dual Subgradient

Heterogenous Goods,
Unit Demand

Demange et al.
(1986)

Crawford and Knoer (1981)

Homogenous Goods,
Diminishing
Marginal Utility

Ausubel (2002) Uniform-price auction

Heterogenous Goods,
Gross Substitutes

Gul and Stacchetti
(2000)

Kelso and Crawford (1982)

Heterogenous Goods,
General Preferences

This paper
Parkes (1999),
Ausubel and Milgrom (2002)

Table 1: This auction literature can be categorized based on the underly-
ing algorithm.

subgradient algorithm requires the report of only one element of the demand
correspondence. This is related to a difference in the way they adjust vari-
ables (i.e. prices); primal-dual algorithms have advantages over subgradient
algorithms in terms of convergence speed. Hence there is a tradeoff in the
merits of the two algorithms.

2 The Efficient Allocation Problem

There is a finite set of bidders N , and a finite set of indivisible objects (or
goods), G. Each bidder j ∈ N has a non-negative integer valuation for each
set of objects H ⊆ G denoted vj(H) ∈ N0 (with vj(∅) = 0). We assume
that v(·) is non-decreasing, i.e. H ⊆ H ′ implies vj(H) ≤ vj(H

′). Preferences
are quasi-linear: A bidder j who consumes H ⊆ G and makes a payment of
p ∈ R receives a net payoff of vj(H) − p.

The set of object assignments is denoted as follows.

Γ =
{
µ ∈ (2G)|N | : i �= j implies µi ∩ µj = ∅}

An assignment need not allocate all objects, since we do not require
⋃

j∈N µj =
G. Assignment µ ∈ Γ is efficient if it is one that maximizes

∑
vj(µj). Effi-

cient assignments allocate all objects, due to the monotonicity assumption.
The problem of finding an efficient assignment can be solved in vari-

ous ways. In order for a linear (as opposed to integer) program to solve
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such a problem, it is necessary for the program to have sufficient strength.4

Therefore, we use the following linear programming formulation based on
Bikhchandani and Ostroy (2002). Setting δµ = 1 is interpreted as selecting
the assignment µ; setting yj(S) = 1 is interpreted as assigning S to bidder j.
Dual variables are listed in parentheses.

max
∑
j∈N

∑
S⊆G

vj(S)yj(S)

s.t. yj(S) =
∑

µ:µj=S

δµ ∀j ∈ N, ∀S ⊆ G (pj(S))

∑
∅�=S⊆G

yj(S) ≤ 1 ∀j ∈ N (πj)

∑
µ∈Γ

δµ = 1 (πs)

0 ≤ yj(S) ∀S ⊆ G, ∀j ∈ N

0 ≤ δµ ∀µ ∈ Γ

(P)

The third set of constraints and the nonnegativity of each δµ imply δµ ≤ 1
for all µ ∈ Γ. Bikhchandani and Ostroy (2002) showed that this formulation
always has an optimal integer solution, i.e. it finds an efficient assignment.

The dual variable associated with the first type of constraint, pj(S), is
interpreted as bidder j’s price for the set S. The variable πj is interpreted
as bidder j’s surplus (or net payoff). Finally, the variable πs is interpreted
as the seller’s surplus. The dual is

min
∑
j∈N

πj + πs

s.t. πj + pj(S) ≥ vj(S) ∀j ∈ N, ∀∅ �= S ⊆ G

pj(∅) ≥ vj(∅) ∀j ∈ N

πs −
∑
j∈N

pj(µj) ≥ 0 ∀µ ∈ Γ

pj(S) ≷ 0 ∀j ∈ N, ∀S ⊆ G

πj ≥ 0 ∀j ∈ N

πs ≷ 0

(D)

4See Bikhchandani et al. (2002) for more on how linear relaxations of some integer
programs may not find feasible outcomes in some classes of problems.
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These programs could have been written by omitting the variables for S =
∅. Since we maintain pj(∅) ≡ 0 throughout, this choice has no consequence.

By the integrality of (P) mentioned above, efficient assignments of objects
can be supported by (dual) prices that are non-additive and non-anonymous
(Section 4.3), meaning that different bidders see different prices for the same
bundle.

3 The Primal-Dual Auction

We first give a brief overview of primal-dual algorithms.5 This method for
solving a linear program can be summarized as follows.

1. Choose a feasible dual solution to (D).

2. Verify whether it is optimal by identifying a primal solution to (P) that
is complementary to it. This is done by appending the complementary
slackness conditions as constraints to (P), yielding the “restricted pri-
mal” (RP).

3. If none exists, the dual solution was not optimal; however, the dual to
(RP) tells you how to adjust the dual solution to make it “closer” to
optimal. Adjust the dual solution and repeat.

In this section, we perform these steps. Subsequently, we interpret these
steps as an auction.

1. Choose low initial prices pj(S), e.g. pj(S) ≡ 0.

2. Try to satisfy the bidders by finding an assignment which satisfies each
bidder’s demand at current prices.

3. If no such assignment exists, adjust prices and repeat.

One of our main points is to demonstrate that the construction of an
ascending auction—determining how to adjust prices—can be performed by
examining the primal-dual algorithm for the associated linear program.

5See Chapter 5 of Papadimitriou and Steiglitz (1982) for a more formal description.
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3.1 The Algorithm

For any given list of prices pj(S) ≥ 0 (with pj(∅) = 0), the remaining vari-
ables of (D) can be chosen as follows to ensure feasibility. Throughout the
algorithm, we maintain these equalities.

πj = max
S⊆G

[vj(S) − pj(S)] ∀j ∈ N

πs = max
µ∈Γ

∑
j∈N

pj(µj)

Interpret πj as bidder j’s potential surplus at current prices, and πs as that
of the seller.

Define, respectively, the set of active bidders, the demand correspondence
of any bidder j, the seller’s supply correspondence, and the buyer-compatible
part of the supply correspondence as follows.

N+ ≡ {j ∈ N : πj > 0}
Dj ≡ arg max

S⊆G
[vj(S) − pj(S)] = {S ⊆ G : πj = vj(S) − pj(S)}

Γ∗ ≡ arg max
µ∈Γ

∑
j∈N

pj(µj) = {µ ∈ Γ : πs =
∑
j∈N

pj(µj)}

Γ∗(D) ≡ {µ ∈ Γ∗ | ∀j ∈ N : µj ∈ Dj ∪ {∅}}
For simplicity of notation, we suppress the dependence of these concepts

on the pj(S)’s. The set Γ∗(D) is the part of the seller’s supply correspondence
which is compatible with bidders’ demand in the sense that no non-trivial
bundles are assigned that are non-demanded.

The (non-redundant) complementary slackness (CS) conditions are as
follows.

j ∈ N+ =⇒
∑

∅�=S⊆G

yj(S) = 1

S /∈ Dj ∪ {∅} =⇒ yj(S) = 0

µ /∈ Γ∗ =⇒ δµ = 0

It is straightforward to check that these constraints imply δµ = 0 for
all µ /∈ Γ∗(D). By setting to zero (or removing) all variables (δµ)µ/∈Γ∗(D)

and (yj(S))S /∈Dj∪{∅}, and appending the CS conditions to (P), we obtain the
following restricted primal.
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yj(S) =
∑

µ∈Γ∗(D):µj=S

δµ ∀j ∈ N, ∀S ∈ Dj ∪ {∅}
∑
S∈Dj

yj(S) = 1 ∀j ∈ N+

∑
∅�=S∈Dj

yj(S) ≤ 1 ∀j �∈ N+

∑
µ∈Γ∗(D)

δµ = 1

0 ≤ yj(S) ∀j ∈ N, ∀S ∈ Dj ∪ {∅}
0 ≤ δµ ∀µ ∈ Γ∗(D)

(RP)

If (RP) is feasible, then we began with an optimal solution (p, π), and
are done. Otherwise, the Farkas Lemma implies that there exists a feasible
solution to the following alternative system.

λs +
∑
j∈N

λj < 0

λj + ρj(S) ≥ 0 ∀j ∈ N, ∀S ∈ Dj

ρj(∅) ≥ 0 ∀j ∈ N+

λs −
∑
j∈N

ρj(µj) ≥ 0 ∀µ ∈ Γ∗(D)

ρj(S) ≷ 0 ∀j ∈ N, ∀S ∈ Dj

λs ≷ 0

λj ≷ 0 ∀j ∈ N+

λj ≥ 0 ∀j /∈ N+

(DRP)

We interpret ρj(S) as a (direction of) price change for bundle S for bidder j.
As a consequence, we do not change the prices of non-demanded bundles.
We interpret λj as the change in bidder j’s surplus and λs as the change in
the seller’s surplus. When (RP) is infeasible, the first inequality of (DRP)
states that total surplus must decrease.

In order to define an ascending auction, we search for a solution to (DRP)
such that ρj(S) ≥ 0 for all j ∈ N and S ∈ Dj ∪{∅}. Such a solution may not
exist if the variables for (D) (i.e. the pj(S)’s) are chosen arbitrarily. It does,
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however, under a certain overdemand property defined below. That this
property continues to hold throughout the adjustment procedure is what we
intend to show.

To define it, we introduce artificial variables to (RP). For any K ⊆ N+

define

Z(K) = max −
∑
j∈K

zj

s.t. yj(S) =
∑

µ∈Γ∗(D):
µj=S

δµ ∀j ∈ N, ∀S ∈ Dj ∪ {∅}

∑
S∈Dj

yj(S) + zj = 1 ∀j ∈ N+

∑
∅�=S∈Dj

yj(S) ≤ 1 ∀j �∈ N+

∑
µ∈Γ∗(D)

δµ = 1

0 ≤ yj(S) ∀j ∈ N, ∀S ∈ Dj ∪ {∅}
0 ≤ δµ ∀µ ∈ Γ∗(D)

0 ≤ zj ∀j ∈ N+

(OD)

In what follows, we make use of the fact that the feasible region of (OD)
does not depend on the choice of K.

Definition 1 Given the variables N+, Dj, Γ∗(D) (as a function of (D) vari-
ables), we say that overdemand holds if (OD) is feasible and Z(N+) < 0.

Feasibility of (OD) requires Γ∗(D) to be nonempty. In turn, this implies
that any unassigned object cannot be allocated in a way that creates addi-
tional revenue for the seller. In this sense, this rules out prices that get “too
high.”

In addition, if overdemand holds then (RP) is infeasible, since any feasible
solution to (RP) would be a feasible solution to (OD) with objective function
value Z(N+) = 0.

The following definition is central to describing the price changes we use.
We consider it to be the natural generalization of the concept of minimal
overdemanded sets of objects introduced by Demange et al. (1986).

10



Definition 2 When overdemand holds, we say that a coalition K ⊆ N+ is
undersupplied if Z(K) < 0. Such a coalition K is minimally undersup-
plied if for all K ′ � K, Z(K ′) = 0.

It is clear that the definition would not change if the phrase “all K ′ �

K” were replaced with “all K ′ = K \ {j} with j ∈ K.” Furthermore, if
overdemand holds, then at least one non-empty, minimally undersupplied
coalition must exist.

Our first main result is that non-negative price changes can be chosen so
that only minimally undersupplied bidders see positive price increases.

Theorem 1 If overdemand holds then for any minimally undersupplied coali-
tion K, there is a solution to (DRP) such that ρj(S) = 1 for all j ∈ K and
S ∈ Dj, and ρj(S) = 0 otherwise.

Proof Let K be minimally undersupplied. Note that for all M ⊆ N+,
Z(M) = maxµ∈Γ∗(D) |{j ∈ M : µj ∈ Dj}|−|M |. Therefore, since Z(K\j) = 0
for any j ∈ K, it is easy to see that Z(K) = −1, i.e. |K| − 1 bidders can be
satisfied. By the duality theorem of linear programming we have that

Z(K) = min λs +
∑
j∈N

λj

s.t. λj + ρj(S) ≥ 0 ∀j ∈ N, ∀S ∈ Dj

ρj(∅) ≥ 0 ∀j ∈ N+

λs −
∑
j∈N

ρj(µj) ≥ 0 ∀µ ∈ Γ∗(D)

ρj(S) ≷ 0 ∀j ∈ N, ∀S ∈ Dj ∪ {∅}
λs ≷ 0

λj ≥ −1 ∀j ∈ K

λj ≥ 0 ∀j ∈ N \ K

Since Z(K) < 0, any optimal solution to the above program is a feasible
solution to (DRP). We show that there is one where ρj(S) = 1 for all j ∈ K
and S ∈ Dj, and ρj(S) = 0 otherwise.

Set λj = −1 for all j ∈ K and λj = 0 otherwise. Set λs = |K| − 1. This
is clearly feasible. It is optimal because

λs +
∑
j∈N

λj = |K| − 1 − |K| = −1
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completing the proof.

Definition 3 In the proof of Theorem 1, we constructively derived the fol-
lowing price adjustment process.

1. Identify a minimally undersupplied set of bidders, K.

2. For each j ∈ K and S ∈ Dj, add ρj(S) = 1 to pj(S); otherwise do not
change pj(S).

3. For each j ∈ K, change πj by λj = −1; for each j /∈ K do not change
πj.

4. Increase πs by λs = (|K| − 1).

Based on results below, we can interpret the repeated application of this
price adjustment process as an ascending auction. In practice, steps 3 and 4
are carried out only implicitly in the execution of the auction. The fact that
a bidder’s surplus decreases by one (or zero) is a consequence of the price
increases; a similar consequence exists for the seller. The steps are listed here
for completeness in describing the exact primal-dual algorithm.

After such a price adjustment, it is clear that the demand correspondence
for any bidder j /∈ K does not change. For j ∈ K ⊆ N+, since valuations
are assumed to be integral, a price increase of ρj(S) = 1 can only enlarge
j’s demand correspondence; no demanded bundle can become non-demanded
(assuming integrality of prices throughout).6 Therefore, we have the follow-
ing.

Lemma 1 If prices are integral and overdemand holds, then for every j ∈ N
the demand correspondence Dj(·) weakly increases after a price adjustment.

Conversely, if pj(S) has increased during any price adjustment, S must
be demanded by bidder j at all future iterations. Therefore, if the algorithm
is initialized at zero prices (p ≡ 0), then only demanded bundles can have
positive prices.

Another observation is that, after a price adjustment, the seller’s demand-
compatible supply correspondence Γ∗(D) can change in only two ways. First,
some µ ∈ Γ∗(D) could no longer be revenue maximizing after a price change.

6After the price adjustment, a demanded bundle may yield zero surplus to the bidder,
but this bundle is still (weakly) demanded.
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In this case, since the seller’s revenue changes by λs = (|K| − 1), the change
in revenue from µ must be |{j ∈ K : µj ∈ Dj}| ≤ |K| − 2. Second, some
µ �∈ Γ∗(D) could become revenue maximizing after a price change. This can
happen only if {j ∈ K : µj ∈ Dj} = K and before the price change,

∑
j∈N

pj(µj) =
∑
j∈N

pj(µ
′
j) − 1

where µ′ is one of the assignments in Γ∗(D) that satisfies |K| − 1 of the
bidders in K.

To finally prove that prices increase throughout the algorithm, we have
the following result.

Theorem 2 Beginning the algorithm at p = 0, overdemand holds after each
iteration of the price adjustment process until termination.

Proof It is clear that initially when each price is set to pj(S) ≡ 0 overde-
mand holds: all bidders demand Dj(p) = {G} and Γ∗(D) is the set of n+1 al-
locations where one bidder (or the seller) is assigned G and all other bidders
receive nothing. Clearly (OD) is feasible, N+ = N , and Z(N) < 0.

Furthermore, if prices are integral at the beginning of an iteration, then
they remain integral after the iteration, by our specification of unit price
increases.

In order to prove the result, it suffices to prove that feasibility of (OD)
holds from one iteration to the next; if Z(N+) < 0 after the iteration, then
overdemand holds; otherwise, Z(N+) = 0 and the algorithm terminates with
an optimal solution. Below, the subscript or superscript t denotes the value
of a variable during the tth iteration of the price adjustment.

Assume that (OD) is feasible during iteration t (and that prices are
integral). We show that an optimal solution to (OD) in iteration t defines
a feasible solution to (OD) in iteration (t + 1). Let (δt, yt, zt) be such an
optimal solution, and without loss of generality suppose it is integral,7 so
δt
µ̂ = 1 for some µ̂. The assignment µ̂ satisfies the demand of (|Kt| − 1)

bidders (where Kt is the minimally undersupplied set in round t). Since
(πs)t+1 = (πs)t + (|Kt| − 1), that assignment is still revenue maximizing in
round (t + 1), i.e. µ̂ ∈ Γ∗

t+1. By Lemma 1, this implies µ̂ ∈ Γ∗(D)t+1.
Therefore, a feasible solution to (OD) for iteration (t+1) can be obtained

from (δt, yt, zt) by setting δt+1
µ̂ = 1 and all other δt+1

µ variables to zero. This

7Integrality of (OD) follows from integrality of (P).
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implies yj(µ̂j)
t+1 = 1 for all j ∈ N and yj(S)t+1 = 0 otherwise. The zt+1

j

variables can obviously be chosen to complete a feasible solution; for all
j ∈ N+, zj = 1 if and only if µ̂j = ∅.

Theorems 1 and 2 imply that prices are nondecreasing throughout the
algorithm. Since the primal-dual algorithm eventually solves (P), this defines
an ascending auction that terminates with the efficient assignment.

Definition 4 A Primal-Dual (hereafter, PD) Auction is defined as an
iterative procedure as follows.

1. Initially set prices to zero: p1
j(S) ≡ 0 for all j ∈ N , S ⊆ G.

2. With respect to current round-t prices, ask the bidders to reveal their
demand correspondences, Dt

j.

3. If overdemand holds, perform the price adjustment process (Defini-
tion 3): choose a minimally undersupplied set of bidders Kt, and set
pt+1

j (S) = pt
j(S) + 1 for each j ∈ K, S ∈ Dt

j; all other prices remain

the same pt+1
j (S) = pt

j(S). Return to Step 2.

4. If overdemand does not hold, choose an assignment µ ∈ Γ∗(Dt), and
charge the bidders pt(µj), ending the auction.

Observe that this definition does not uniquely define an algorithm, since
(in Step 3) there may be multiple minimally undersupplied sets of bidders in
a given round of the auction. In Section 4 we show (Theorem 4) that under
some conditions this choice is inconsequential.

Corollary 1 Every PD Auction weakly increases all prices pj(S) until ter-
mination and yields an efficient assignment.

This follows from Theorems 1 and 2.

3.2 An Example

In this section we present an example of a PD Auction applied to a set-
ting with three bidders and three goods. Table 2 lists, for each round of
the auction, the prices each bidder faces for each bundle, and the resulting
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surplus each bidder would obtain from each bundle at those prices. A bid-
der’s demand correspondence is the set of bundles yielding maximum surplus
(appearing as boldfaced surpluses in the table).

In each round, an undersupplied set of bidders is chosen. To choose
such a set, the auctioneer must determine the set of revenue-maximizing
assignments, Γ∗(D), which allocate objects in a demand-compatible way.
The maximum revenue obtainable for the seller in each round is the seller’s
surplus, πs, given in the last column of the table. Observe that in rounds
one, two, three, and five, there are multiple minimally undersupplied sets of
bidders. For such rounds, the auctioneer must choose one of them, on whom
he implements price increases. In Section 4 we discuss the implications of
this choice.

For these valuation functions there are four efficient assignments in the
example. One assigns (to Bidders 1, 2, and 3) (c, b, a). The other three are
(c, ∅, ab), (c, a, b), and (bc, ∅, a). Observe that each one is revenue maximizing
and demand-compatible in the final round of the auction. Furthermore, each
of them gives the bidders their Vickrey-Clarke-Groves payoffs (defined in
Section 4).

4 VCG Payments and Substitutability

A well-known mechanism in the literature is the Vickrey-Clarke-Groves sealed-
bid auction. It chooses efficient outcomes based on the reported preferences
of participating agents, and prescribes payments to/from the agents in a way
that induces the agents to report their preferences truthfully. We formalize
this mechanism in our environment with the following definitions.

Let V (N) represent the value of (P), which can be interpreted as the
“social surplus” of the auction setting. More generally, for any subset of
bidders K ⊆ N , let V (K) = maxµ∈Γ

∑
K vj(µj). This amount would be the

social surplus if only the bidders in K were present.
With respect to a given efficient assignment µ∗, bidder j’s VCG pay-

ment is defined to be V (N \ j)−∑
i∈N\j vi(µ

∗
i ). His resulting VCG payoff

(or marginal product) is therefore V (N) − V (N \ j). Since the bidder’s re-
ported valuations cannot affect the seller’s calculation of V (N \ j), he max-
imizes his payoff by reporting a valuation function which maximizes V (N).
This alignment of efficiency with a bidder’s incentives is what makes the
VCG payment scheme appealing.
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In (P), the dual variable associated with the constraint
∑

S⊆M yj(S) ≤
1 can be interpreted as bidder j’s VCG payoff: Reducing the right hand
side of this constraint to zero has the effect of removing bidder j from the
problem. The resulting change in the optimal objective function value is
V (N) − V (N \ j), which is bidder j’s marginal product.

This argument shows only that among the set of optimal dual solutions
to (D) there is one that gives bidder j his marginal product. This argu-
ment does not prove that some optimal dual solution yields every bidder’s
marginal product simultaneously. In fact, there may not exist such a dual
solution. Bikhchandani and Ostroy (2002) address this question by provid-
ing the following necessary and sufficient condition for such a dual solution
to exist, simultaneously yielding all bidders’ VCG payoffs (and hence their
VCG payments).

Definition 5 We say that Agents are Substitutes when the marginal
product of any set of bidders M ⊆ N exceeds the sum of the marginal
products of the individual bidders in M , i.e.

V (N) − V (N \ M) ≥
∑
j∈M

[V (N) − V (N \ j)] ∀M ⊆ N (ASC)

This condition implies that individual bidders add relatively less to the
social surplus than they do to the surplus of smaller coalitions. In addition,
this condition is necessary and sufficient for the VCG payments (and the
seller’s VCG receipts) to be in the core of the cooperative game associated
with this model.8 The VCG payoff scheme is in the core of such a game
when, for any M ⊆ N , the total payoff to M ∪ {s} weakly exceeds V (M),
i.e.

∑
j∈M

[V (N) − V (N \ j)] + V (N) −
∑
j∈N

[V (N) − V (N \ j)] ≥ V (M).

This is equivalent to (ASC).

Theorem 3 (Bikhchandani and Ostroy, 2002) If Agents are Substitu-
tes (ASC), then among all optimal dual solutions (πj)j∈N to (D), the one

8See Bikhchandani and Ostroy (2002). In the cooperative game, the set of agents is
N ∪ {s} (where s denotes the seller) and the characteristic function χ is defined so that
for all M ⊆ N , χ(M ∪ s) = V (M) and χ(M) = 0. A similar observation appears in
Ausubel and Milgrom (2002).
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that maximizes
∑

j∈N πj yields the bidders’ VCG payoffs: for all j ∈ N , we
have πj = V (N) − V (N \ j).

Intuitively, to derive VCG payments with an ascending-price algorithm,
this result leads us to decrease the values of πj in a “minimal” way, so as not to
adjust beyond a dual solution which maximizes

∑
j∈N πj. A PD auction does

this by increasing prices only for minimally undersupplied sets of bidders.
For this to work, though, requires that this type of substitutability condi-

tion hold also with respect to subsets of bidders. The reason for this is that,
since the early rounds of a PD auction may force a bidder to compete against
only a subset of other bidders (in a minimally undersupplied set), comple-
mentarities within that subset may drive prices too high. Intuitively, if the
“wrong” subset of bidders is chosen to compete within itself, then prices on
some bundles could be driven too high. In that case, VCG payments could
not be reached monotonically.

Therefore, our main result in this section is that under the stronger condi-
tion of the submodularity of coalition values V (·), a PD auction yields VCG
payments.9

Theorem 4 Suppose that for all M ⊆ M ′ ⊆ N and all j ∈ N we have
V (M ∪ {j}) − V (M) ≥ V (M ′ ∪ {j}) − V (M ′). Then any PD Auction ter-
minates in VCG payments.

Proof We show that at termination πj = V (N) − V (N \ j) for all j ∈
N . Since the primal-dual algorithm terminates with optimal dual variables,
it must terminate with πj ≤ V (N) − V (N \ j) for all j ∈ N . This is
because V (N)− V (N \ j) is the effect of reducing the right-hand side of the
corresponding primal constraint from one to zero, so πj cannot exceed that
value.

Suppose by contradiction that by the monotonicity of the price adjust-
ment process, there exists an iteration of the algorithm, t, such that (i) for all
j ∈ N , πt−1

j ≥ V (N)−V (N \j) and (ii) for some l ∈ N , πt
l < V (N)−V (N \l).

By integrality, πt−1
l = πt

l + 1 = V (N) − V (N \ l).
Since l is part of the minimally undersupplied set selected in period t−1,

Kt−1, there exists an allocation µ̄ ∈ Γ∗(D)t−1 with µ̄l = ∅ that is optimal

9This submodularity condition is also the one under which
Ausubel and Milgrom’s (2002) auction implements VCG payments. See Section 5.
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for (OD) (evaluated with respect to Kt−1). Let M = {i ∈ N : µ̄i �= ∅}, so
Kt−1 \ {l} ⊆ M . Let µ̂ be an allocation yielding value V (M ∪ {l}).

Now,
∑

j∈N :µ̄j �=∅
pt

j(µ̄j) =
∑

j∈N :µ̄j �=∅
vj(µ̄j) − πt

j

≤ V (M) −
∑
j∈M

πt
j

< V (M) −
∑
j∈M

πt
j + (V (N) − V (N \ {l}) − πt

l )

≤ V (M) −
∑

j∈M∪{l}
πt

j + (V (M ∪ {l}) − V (M))

= V (M ∪ {l}) −
∑

j∈M∪{l}
πt

j

≤
∑

j∈N :µ̂j �=∅
vj(µ̂j) −

∑
j∈M∪{l}

πt
j

≤
∑

j∈N :µ̂j �=∅
pt

j(µ̂j)

Analogous to the proof of Theorem 2, we know that since µ̄ ∈ Γ∗
t−1 and µ̄

was optimal to (OD), also µ̄ ∈ Γ∗
t holds.

Therefore at time t the allocation µ̂ has better value to the seller than
the seller optimal allocation µ̄, thereby providing a contradiction.

In the example of Section 3.2 (Table 2) the submodularity condition
of Theorem 4 is satisfied, so the auction results in VCG payments. It
is straightforward to observe that for those valuation functions, we have
V ({1, 2, 3}) = V ({1, 3}) = 9, V ({2, 3}) = 7, and V ({1, 2}) = 8. Therefore,
Bidder 2’s VCG payoff is zero; he should either consume nothing, or pay
his full value for whatever bundle he receives. This occurs in any of the
four efficient assignments in the example. Similarly, the final surplus of Bid-
ders 1 and 3 equal their VCG payoffs (of V ({1, 2, 3}) − V ({2, 3}) = 2 and
V ({1, 2, 3}) − V ({1, 2}) = 1 respectively).

Without the submodularity condition in Theorem 4, a PD auction need
not terminate in VCG payments.10 It is of interest to note, however, that

10Such an example is available upon request. The example shows that the Agents are
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even in such cases, a single (predetermined) bidder’s VCG payment can be
obtained by choosing, whenever possible, an undersupplied set excluding that
bidder.

Theorem 5 Fix bidder j, and suppose that in each round, a PD Auction
chooses the minimally undersupplied set of bidders K so that, whenever pos-
sible, j �∈ K. Then prices at termination give bidder j his VCG payoff.

Proof We show that by making such choices of minimally undersupplied
sets, we have πj = V (N) − V (N \ j) at termination. Fixing j as in the
Theorem, let iteration t be the last one at which πt

j = V (N)−V (N \ j). The
existence of t follows from the integrality of the price changes and valuations,
as in the proof of Theorem 4.

If the algorithm is not finished, then j belongs to the undersupplied set
chosen in iteration t. By supposition, then, j must be a member of every
minimally undersupplied set at iteration t. In particular there must exist
µ ∈ Γ∗(D)t such that µi ∈ Dt

i for all i ∈ N \ {j}, and µj = ∅ (otherwise
N \ {j} would contain a minimally undersupplied set).

Since the dual variables are not optimal for (D) we have

V (N) < (πs)t +
∑
i∈N

πt
i =

∑
i∈N\j

pt
i(µi) +

∑
i∈N

πt
i

=
∑

i∈N\j
[vi(µi) − πt

i ] +
∑
i∈N

πt
i ≤ V (N \ j) + πt

j

= V (N \ j) + V (N) − V (N \ j) = V (N)

which is a contradiction.

4.1 Incentives

When VCG payments are implemented through the use of a sealed-bid auc-
tion (i.e. a direct revelation mechanism), bidders maximize their payoffs by
bidding truthfully (i.e. truthfully reporting their valuations). In other words,
the VCG mechanism is strategyproof. Therefore it would not be surprising
for an ascending auction (i.e. extensive form game) that implements VCG

Substitutes condition is not sufficient to guarantee that VCG payments result from any
PD auction, depending on the choice of undersupplied sets of bidders.
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payments to inherit good incentives properties. In fact, the argument is typi-
cally made that if such a (extensive form) game implements VCG payments,
then “truthful behavior” (suitably defined) must be an equilibrium of the
game.

The argument, following the logic of the Revelation Principle, may be
made as follows. Suppose a bidder behaves in a way which is consistent with
some false valuation function (different from his true one). Further suppose
that this causes him to receive objects and make payments corresponding to
the VCG payoff for the false valuation. By strategy-proofness of the VCG
(direct revelation) mechanism, the bidder cannot be better off than if he had
behaved truthfully.

Unfortunately, this argument does not work if the bidder could behave
in a way which is inconsistent with any valuation function.11 Second, it
does not apply if the bidder behaves consistently with respect to a valuation
function that does not yield a VCG payoff for that valuation. In our setting,
for example, that could happen if the (ASC) condition fails.

The first of these problems can be fixed by specifying the rules of the
auction in a way that bidders must behave consistently with some valuation
function. Secondly, observe that (i) a PD auction must result in an efficient
outcome (with respect to the inferred valuation functions), and (ii) a bidder
pays at least his VCG payment at the final, efficient assignment. Together,
these imply that if a PD auction would result in VCG payoffs under “truthful”
bidding, then such bidding is an equilibrium.

Theorem 6 Fix a PD auction, and suppose the bidders’ valuation functions
are such that VCG payoffs would result under truthful bidding (e.g. under
the submodularity condition of Theorem 4). Then truthful bidding is a Nash
Equilibrium in the suitably defined PD auction.12

Proof Suppose other bidders with valuations v−j are bidding truthfully.
When bidder j bids truthfully with respect to vj, he obtains his VCG payoff;
denote the resulting assignment as µ. When he bids as if his valuation

11Similar difficulties appear in the literature on extensive-form implementation. See
Moore and Repullo (1988).

12This result requires a formal definition of a game based on the PD auction. Specifically,
the proof below requires that any bidding behavior in the auction corresponds to truthful
behavior for some valuation function. Such a requirement can be enforced by prohibiting
bid withdrawals, etc. We leave this formalization to the reader.
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function is v′
j, denote the resulting assignment as µ′ and his resulting payment

(for µ′
j) as p′j. Finally, let µ′′ ∈ arg max

∑
i�=j vi(·) be an assignment achieving

value V (N \ j).
By the nature of the dual variable πj, a PD auction yields a payoff no

higher than the VCG payoff. Applied to v′
j, this implies

v′
j(µ

′
j) − p′j ≤ v′

j(µ
′
j) +

∑
i∈N\{j}

[vi(µ
′
i) − vi(µ

′′
i )] (1)

By bidding truthfully, bidder j (with valuation vj) receives his VCG pay-
off, which is

V (N) − V (N \ j) =
∑
i∈N

vi(µi) −
∑

i∈N\{j}
vi(µ

′′
i )

≥
∑
i∈N

vi(µ
′
i) −

∑
i∈N\{j}

vi(µ
′′
i )

= vj(µ
′
j) +

∑
i∈N\{j}

[vi(µ
′
i) − vi(µ

′′
i )]

≥ vj(µ
′
j) − p′j.

The first inequality follows from the efficiency of µ, while the last follows
from (1). Hence bidding truthfully is best.

4.2 Necessity of Submodularity

Theorem 4 shows that if a submodularity condition is satisfied, then there
exists an ascending auction that implements VCG payments. In this section,
we show that such a condition is somewhat necessary for the existence of
such an auction, in the following sense.

If the submodularity condition of Theorem 4 fails, then at least one bid-
der’s valuation function (say Bidder 1) does not satisfy13 the following gross
substitutes condition of Kelso and Crawford (1982).

Definition 6 The valuation function vj satisfies gross substitutes if, for

all prices p, p′ ∈ R2G×N
+ such that

pj(S) =
∑
g∈S

pj(g) ≤ p′j(S) =
∑
g∈S

p′j(g) ∀j ∈ N, S ⊆ G

13See Theorem 11 of Ausubel and Milgrom (2002).
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Bundle

Bidder a b ab

1 4 6 16
2 2 10 12
3 8 + α 2 + α 8 + α

Table 3: An example violating gross substitutability.

(i.e. are “additive”) and for all S ∈ Dj(p), there exists S ′ ∈ Dj(p
′) such that

{g ∈ S : pj(g) = p′j(g)} ⊆ S ′.

For the 2-object case, the failure of this condition by v1(·) simply means
v1(ab) > v1(a) + v1(b). In this 2-object case, we show that there exists a
domain of valuation functions for the other bidders (2, . . . , n) on which no
ascending auction (defined below) can always implement VCG payments.
In fact, this result is true even if we require the other bidders’ valuation
functions to satisfy the gross substitutes condition.

Gul and Stacchetti (2000) prove a result of this type when auction mech-
anisms are required to assign prices which are “additive” and “anonymous”
(as defined in Section 4.3). Even when all bidders’ valuation functions are re-
quired to satisfy gross substitutes, they show that no such ascending auction
can always yield VCG payments. Theorem 4 shows how their impossibility
result can be overcome by expressing prices more generally. The result in
this section shows the degree to which our positive result depends on substi-
tutability.

The intuition behind the more general result below can be given with a
simple example. For two objects G = {a, b}, suppose that three bidders have
the valuations given in Table 3. Restricting attention to the cases where
α ∈ {−1, 0, 1}, it is efficient to give b to Bidder 2, and a to Bidder 3. Their
respective VCG payments are 8−α and 6 (while Bidder 1 pays and receives
nothing). Observe that the submodularity condition of Theorem 4 fails in
this example. For the case of three bidders, this is equivalent to the failure
of (ASC) (which happens with respect to M = {2, 3}).

If an ascending auction uses only “real price information” to determine
allocations and payments (as we define below), then it must do two things.
First, it must conclude by offering good a to Bidder 3 at a price of 6. Second,
it must determine the value of α in order to offer good b to Bidder 2 at the
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correct price of 8−α. However, for the class of Bidder 3’s valuation functions
obtained by varying α ∈ {−1, 0, 1}, the value of α cannot be inferred from
his demand correspondence until Bidder 3 “demands” the empty set, which
occurs only when his price for a exceeds 8 + α > 6. This contradicts the fact
that his price for that object ascends throughout the auction and ends at 6.

This idea can be extended to any situation where one bidder has a val-
uation function over two objects that does not satisfy gross substitutes. To
formalize this, we define an ascending auction by generalizing Gul and Stac-
chetti’s definition to allow for non-additive, non-anonymous prices. However,
we strengthen the definition by requiring (with condition (3) below) that
prices seen during the auction must represent actual payments which could
be made by the bidders.

Definition 7 A price path is a function P : [0, 1] → R2G×N . For each bundle
of goods H ⊆ G, interpret Pi,H(t) to be the price seen by bidder i for bun-
dle H, at “time” t. A price path is ascending if for all H ⊆ G the function
Pi,H(t) is non-decreasing in t.

An ascending auction adjusts prices based only on the reported demands
of the bidders. The following definition captures that idea.

Definition 8 An ascending auction assigns to each profile of bidder valu-
ation functions v ∈ R2G×N

+ both an ascending price path P v and a final
assignment µv satisfying the following two conditions. First, for all valuation
profiles v, v′ ∈ R2G×N

+ ,

[∀t ∈ [0, 1], ∀j ∈ N, Dj(P
v(t); v) = Dj(P

v(t); v′)] =⇒
[
P v′

= P v
]
. (2)

where Dj(P ; v) is j’s demand correspondence under prices P when his valu-
ations are vj. That is, if a change to valuation functions v′ does not change
the reported demands of bidders, then it does not change the resulting price
path. Information is revealed only through demand revelation in the auc-
tion.14 Second, the final assignment satisfies demand, i.e.

µv
j ∈ Dj(P

v(1); v) ∀v ∈ R2G×N
+ (3)

14Naturally, the empty set may be demanded, so information may be revealed when
prices get “too high” for a bidder.
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An ascending auction assigns goods such that each bidder j receives a
bundle H that is in his demand correspondence at prices P (1), and charges
that bidder Pj,H(1). In this sense, we require prices in an auction not to be
merely artificial constructs.

Unfortunately, when at least one bidder has a valuation function that
does not satisfy the gross substitutes condition, an ascending auction cannot
always implement VCG outcomes on some class of problems, as the next
result shows.

Theorem 7 Suppose that there are two objects G = {a, b} and that |N | ≥ 3.
Suppose one bidder’s valuation function, say v1, fails the gross substitutes
condition. Then there exists a class of gross substitutes valuation functions
for the other bidders, (Vj)j>1, such that no ascending auction yields VCG
payments for each profile from {v1} × V2 × · · · × Vn.

Proof To prove the result, suppose without loss of generality that Bid-
der 1’s valuation function fails GS, and that v1(a) ≡ x ≤ v1(b) ≡ y. Then
v1(ab) = x + y + z where z > 0 (failing GS).

Let Bidder 2 have fixed valuations such that v2(a) = 0 and v2(b) =
v2(ab) = y + z, so V2 is a singleton.15 For α ∈ (0, z], consider Bidder 3’s
valuations to be of the form v3(a) = v3(b) = v3(ab) = x + α; this defines the
class V3. Ignore additional bidders (or assign them infinitesimal valuations).

Since α ∈ (0, z] and x ≤ y, the efficient assignment gives good b to
Bidder 2 and gives good a to Bidder 3. The VCG payment of Bidder 2 is
y + z−α, while that of Bidder 3 is x (and Bidder 1 obviously pays nothing).

Regardless of the value of α, the price path must finish at t = 1 by yielding
P3,a(1) = x. Since P3,a(·) ≤ x throughout the auction (by monotonicity),
Bidder 3 never demands the empty set, regardless of the value of α ∈ (0, z].
Therefore, his demand correspondence, arg maxS v3(S)−P3,S, is independent
of α ∈ (0, z].

By the requirement (2) of an ascending auction, this means that the
price paths on the domain {v1} × {v2} × V3 must be independent of α. This
contradicts the fact that it should always yield Bidder 2’s VCG payment,
which does vary with α.

This result may appear to contradict the results of Ausubel (2000) and
Parkes and Ungar (2002), who provide auction algorithms which always yield

15A similar proof exists with strictly monotonic valuation functions.
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VCG payments. This apparent contradiction is resolved by observing that
the algorithms provided by those authors do not satisfy our definition of an
ascending auction.

For example, with restrictions on the class of valuation functions, Ausubel
(2000) makes clever use of the observation that any increase in prices results
in a corresponding decrease in payoffs for the bidders. Specifically, suppose
that an auctioneer could determine not only “market clearing” (Walrasian)
prices for the set of bidders N , but also determine such (hypothetical) prices
if the set of bidders were N \ j. Since bidder j’s VCG payment equals
the effect of his presence on the other bidders, this amount can be inferred
by examining the difference between these two price vectors. Hence, VCG
payments for all bidders could be calculated by determining n + 1 Walrasian
price vectors, i.e. by running n + 1 Walrasian auctions.16

Such an algorithm does not, as stated, satisfy Definition 8. Our definition
allows for only a single set of (bundle) prices. While other price structures
(such as Ausubel’s) can be mapped into prices of this form, the resulting
prices may no longer be ascending. In this instance, since bidder j’s final
payment in Ausubel’s auction is determined by the difference between two
ascending vectors of parameters—the Walrasian prices and the hypothetical
prices without bidder j—his surplus could actually increase during the auc-
tion. In this sense, the auction cannot be described in terms of ascending
bundle prices.

4.3 Insufficiency of Anonymous Prices

The prices presented to bidders in the PD auction are non-anonymous, mean-
ing that different bidders may see different prices for the same bundle; for-
mally, prices are anonymous if pj(S) = pi(S) for all i, j ∈ N and all S ⊆ G.
Furthermore, the prices are non-additive, meaning that the price of a bundle
is not necessary the sum of the prices of the objects in that bundle; formally,
prices are additive if pj(S) =

∑
g∈S pi(g) for all i ∈ N and all S ⊆ G. One

may wonder whether, in some environments, such rich (non-anonymous and
non-additive) prices are overly complex in achieving VCG payments.

16A similar reasoning combined with Theorem 5 shows that the bidders’ VCG payments
could be obtained for any type of valuation functions by running n (or fewer) iterations
of PD auctions, the jth iteration omitting j from the chosen undersupplied sets whenever
possible.
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For instance, one of the simplest special cases of our model is the assign-
ment problem, in which bidders’ valuation functions are of the form vj(S) =
maxg∈S vj(g) for all S ⊆ G. For this class of problems, Demange et al. (1986)
describe an auction that uses anonymous, additive prices, and yields VCG
payments. On the other hand, Gul and Stacchetti (2000) show that even
if bidders’ valuation functions satisfy the gross substitutes condition in the
current model, there exists no ascending VCG auction that uses anonymous,
additive prices.

The anonymity of prices can only be achieved in settings in which the
VCG outcome is envy-free, i.e. where each bidder j would rather make his
own VCG payment in exchange for his prescribed bundle than to make any
other bidder i’s VCG payment in exchange for i’s prescribed bundle. It is
commonly observed that in many environments, the VCG outcome is not
envy-free, hence anonymous prices are not “rich” enough in those environ-
ments.17

We leave it as an open question as to whether (or under what assump-
tions) non-anonymous but additive prices could be used in an ascending
auction to implement VCG payments.18

5 Subgradient Algorithms

By writing the efficient-allocation problem as a linear program (P), we ob-
tain the definition of PD auctions as a by-product of one particular method
of solving that linear program: the primal-dual algorithm. It is therefore
natural to wonder whether other methods of solving linear programs may
yield auctions, and how they may resemble PD auctions.

In this section, we argue that an application of another such method—
subgradient algorithms—yields the type of auction algorithm described by
Parkes (1999), Parkes and Ungar (2002), and Ausubel and Milgrom (2002).

17One clear exception is the previously mentioned assignment problem. Pápai (2003)
shows that the VCG outcome is envy-free when all bidders have superadditive valuation
functions.

18Under a liberal interpretation of this question, one could say that Ausubel (2000)
answers this question affirmatively. As discussed above, our interpretation of auction
prices (Definition 8) does not admit such an auction format.
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One uses a subgradient algorithm to solve a linear program

Z = max
n∑

j=1

cjxj

s.t.
n∑

j=1

aijxj ≤ bi ∀i ∈ {1, . . . , m}

xj ≥ 0 ∀j ∈ {1, . . . , n}

by first relaxing the first m constraints, yielding

Z(θ) = max
n∑

j=1

cjxj +
m∑

i=1

θi(bi −
n∑

j=1

aijxj).

The θi multipliers are Lagrange multipliers. By the duality theorem of lin-
ear programming, Z = minθ≥0 Z(θ). Finding θ∗ ∈ arg minθ≥0 Z(θ) can be
accomplished using the subgradient algorithm.

At iteration t, the current value of the Lagrange multiplier θt is adjusted
by choosing a subgradient of Z(θt), st, and setting θt+1 = θt + ∆ts

t, where
∆t is a positive “step size.” In fact, if xt is an optimal solution at iteration t
(yielding Z(θt)), then one subgradient is st = Axt − b, so one uses

θt+1 = θt + ∆t(Axt − bi). (4)

If
∑

j aijx
t
j > bi, then θt+1

i > θt
i , increasing the “penalty term” on this

violated constraint. Similarly, if
∑

j aijx
t
j < bi, then θi is decreased.

If step sizes are chosen appropriately, this procedure converges to an
optimal solution. However, convergence of the subgradient algorithm can be
very slow (Fisher, 1981).

We apply this technique to (P) by relaxing the constraints yj(S) ≤∑
µ:µj=S δµ. Let θj(S) ≥ 0 be the corresponding multipliers. We interpret

θj(S) as the price of bundle S for bidder j (analogous to pj(S) in the previous
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analysis).

Vθ(N) = max
∑
j∈N

∑
S⊆G

vj(S)yj(S)−
∑
j∈N

∑
S⊆G

θj(S)yj(S) +
∑
µ∈Γ

δµ[
∑

j∈N :µj �=∅
θj(µj)]

s.t.
∑
S⊆G

yj(S) ≤ 1 ∀j ∈ N

∑
µ∈Γ

δµ ≤ 1

δµ ≥ 0 ∀µ ∈ Γ

yj(S) ≥ 0 ∀S ⊆ G, ∀j ∈ N

After rewriting the objective function as

Vθ(N) = max
∑
j∈N

∑
S⊆G

[vj(S) − θj(S)]yj(S) +
∑
µ∈Γ

δµ[
∑
Sj∈µ

θj(S
j)]

it becomes easy to see that for a given θ, the solution to this problem can be
found as follows.

1. Choose µ to maximize
∑

µ:µj=S θj(µ
j) and set δµ = 1. In other words,

choose the allocation of objects that maximizes the seller’s revenue at
current prices; denote it µt.

2. For each j ∈ N choose Sj to maximize vj(S
j)−θj(S

j) and set yj(S
j) =

1. In other words, choose for each bidder a single, payoff-maximizing
bundle at current prices.

If Sj is assigned to bidder j under µt, then the corresponding constraint
yj(S

j) ≤ ∑
µ:µj=S δµ is satisfied with equality. In this case, equation (4)

tells us there is no change in θj(S
j). In other words, if a bidder’s utility

maximizing bundle is in the selected seller-revenue maximizing allocation µt,
then there is no price change on this bundle.

If Sj is not assigned to bidder j under µt, then the constraint yj(S
j) ≤∑

µ:µj=S δµ is violated. Furthermore, equation (4) increases the value of θj(S
j)

by ∆t > 0, i.e. if this utility-maximizing bundle is not in µt, then it sees a
price increase. Furthermore, the constraint yj(µ

t
j) ≤ ∑

µ:µj=µt
j
δµ becomes

0 < 1. In this case θj(S) is decreased by ∆t, i.e. a non-demanded bundle that
is a part of µt sees a price decrease.

29



Due to the last observation, this algorithm as described does not yield an
auction with ascending prices. A modification of this algorithm that carefully
handles ties and omits such price decreases can be made to yield ascending
prices and result in an efficient assignment. Such modifications appear in
the auctions of Kelso and Crawford (1982), Parkes and Ungar (2002), and
Ausubel and Milgrom (2002).

6 Conclusion

We have demonstrated that an ascending auction for heterogeneous ob-
jects can be constructed through re-interpretation of a primal-dual algo-
rithm. Writing the efficient-assignment problem as a suitable linear pro-
gram yields dual variables which can be interpreted as bundle prices and,
in some cases, as bidders’ Vickrey-Clarke-Groves payments (in the spirit
of Bikhchandani and Ostroy, 2002). A primal-dual algorithm adjusts dual
variables in order to satisfy complementary slackness; we interpret our appli-
cation of this method as an adjustment of prices to satisfy bidder demand.

Therefore, in some cases, VCG payments can be implemented through
such an ascending procedure—a Primal-Dual Auction. We argue that in
other cases, no ascending auction can do so (Theorem 7).

The central concept used in the PD auction to adjust prices is that of min-
imally undersupplied sets of bidders. It can be considered a generalization of
a concept used by Demange et al. (1986) in the special case of the assignment
problem (allocating at most one object per bidder). Demange et al. call a
set of objects H ⊆ G “overdemanded” when H contains fewer objects than
the number of bidders who demand only those objects, i.e.

|{j ∈ N : S ⊆ H for all S ∈ Dj}| > |H|.
In each round of their auction, each bidder sees a price increase for each
object in some minimally overdemanded set of objects.

Observe that if H is minimally overdemanded in their sense, then {j ∈
N : S ⊆ H for all S ∈ Dj} must contain a minimally undersupplied set
of bidders. A PD auction would increase the price of each object in that
set, but in a non-anonymous way: a bidder’s price for an object increases
only if he currently demands it. This non-anonymity is required in the more
general setting since, in general, VCG payments cannot be supported by
anonymous prices. For this reason, we consider PD auctions (and the concept
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of undersupplied bidders) to be the natural generalization of the auction of
Demange et al. (1986).
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