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Abstract

In most real-world (electronic) marketplaces, there
are other considerations besides maximizing imme-
diate economic value. We present a sound way
of taking such considerations into account via side
constraints and non-price attributes. Side con-
straints have a significant impact on the complexity
of market clearing. Budget constraints, a limit on
the number of winners, andor-constraints make
even noncombinatorial market§"P-complete to
clear. The latter two make marketéP-complete

to clear even if bids can be accepted partially. This
is surprising since, as we show, even combinatorial
markets with a host of very similar side constraints
can be cleared in polytime. An extreme equal-
ity constraint makes combinatorial markets poly-
time clearable even if bids have to be accepted en-
tirely or not at all. Finally, we present a way to
take into account additional attributes using a bid
re-weighting scheme, and prove that it does not
change the complexity of clearing. All of the re-
sults hold for auctions as well as exchanges, with
and without free disposal.
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on the trading outcome, and bid re-weighting with multivari-
ate functions to include non-price attributes. In short, our
goal is to develop market designs that are computationally
tractable to clear, and where true economic value is maxi-
mized, taking into account all the pertinent constraints and
attributes of the market. The side constraints could be im-
posed by any party: the buyer(s), the seller(s), the party who
executes the marketplace, the party who develops the tech-
nology for clearing the market, a regulatory body such as the
SEC, liquidity providers (such amarket makersn the NAS-
DAQ or specialistson the NYSE), etc. Similarly, the set of
pertinent attributes and their values could be specified by any
party.

The prior literature has focused on the settings where bids
must be accepted as a whole or rejected, while we also cover
the important practical setting where bids can be partially ac-
cepted. The literature has also focused on settings fvath
disposal(sellers can keep any item and/or buyers can take
extra units of any item). We analyze markets both with and
without free disposal.

We first discuss side constraints in markets where bids are
on individual items, and then move to markets where bids can
be submitted on combinations of items. Finally, we show how
to integrate non-price attributes into (combinatorial) market
designs.

For a long time in the Al community, auctions and ex-2 Singleton Bids

changes have been proposed as mechanisms for allocatingthis section we show that certain practical side constraints
items (resources, tasks, etc.) in multiagent systems consistan make even noncombinatorial auctions hard to clear.

ing of self-interested parties. Some of the market meChagFefinition 1 (WDP) The seller hasn items (one unit each)

nisms that lead to economically efficient outcomes I?]mpoz;_o sell. Each bidder places a set of bids on individual items.

the parties are computationally complex to clear. ; L ;
ticular, there has been a recent surge of interest in algo'[hewmner determination problem (WD) to determine a

rithms for clearing auctions where bids can be submitted€VENUe-Maximizing allocation of items to bidders.
on combinations of item§3; 9; 1; 4; 10; 11; 3; 15; 5; 12; Inthe absence of side constraints, WDP can be solved in poly-
13]. To our knowledge, all of that literature has focusedtime by picking the highest bid for each item independently.
on clearing combinatorial auctions so as to maximize un-The budget constraint below illustrates how sharp7hes.
constrained economic value. In most real-world market-\P-complete cutoff is in the space of side constraints. This
places, especially in business-to-business commerce, theigespecially surprising since a similar constraint, where the
are other considerations besides maximizing immediate ecaiumber of items sold to each biddsrconstrained, leads to a
nomic value that must be taken into account. WDP that was recently shown to be polytime solvable using
In this paper we introduce and analyze two methods for inb-matching 15].!

corporating these additional considerations: side constraintrsmauctions (with bids on individual items only) with

*This work was funded by, and conducted at, CombineNet, Inc.certain types of structural side constraints are also solvable in poly-
311 S. Craig St., Pittsburgh, PA 15213. time using b-matchingg].



Definition 2 (BUDGET) WDP where the amount sold to  In many problems, allowing the decision variables to be
any bidder does not exceed her budget. continuous instead of binary causes the problem to become

. i polytime solvable. For example, the KNAPSACK prob-
-srgllegrrﬁ?sztblszwzl?tﬁg ;%Z)Cg%ﬂ%ﬁév;ﬁghg orricr?st the lem [2] becomes trivial to solve optimally if packages can
' gerp ' be included partially (simply accept packages in descending

PROOFE We reduce PARTITION?2] to BUDGET. In PAR-  value-to-weight order, the last one partially). However, the
TITION, we have a set of integet$ = {z1,22,...,2n}, MAX-WINNERS problem remains hard:

and the goal is to partitiod' into two subsetsd and B (i.e. Theorem 2.3 Even if bids can be accepted partially, MAX-
ANB=0andAUB = S)s.t. WINNERS is\"P-complete (whether or not the seller has to
= Z v = Z i, sell all the items), even with integer prices.

icA i€B PROOF The reduction used to prove Theorem 2.2 applies.
) ) Whenever a bid is accepted even partially, the corresponding
wherez = 537 .5z We create an instance of BUDGET set is included in the cover. O
as follows. Corresponding to eaeh, we create an iten. In some settings, a bidder may want to submit bids on mul-
There are two bidders, say, Andy and Bob; each places the bighle items, but may want to mutually exclude some of the
of same priceg;, for itemi. The budget for Andy and Bob jtems. For example, a buyer may want to buy a VCR and a
each isz (half of the total). This instance of BUDGET has a TV, and either of two TVs (but not both) would be accept-
solution with revenuez if and only if the original partition  able. She could express this by placing bids on each of the

problem has a partition. O three items, but inserting afoR-constraint between the bids
If bids can be accepted partially, BUDGET can be solvedon the TVs.

in polytime using linear programming. - . ;
Another practical side constraint is the number of winners!:)eflnltlon 4 (XORS) WDP W'th. XOR-constraints. - When-
ver two bids are combined witkoR, at most one of them

For example, the seller may not want the overhead of dealin .
with a large number of winning bidders. an win.

Definition 3 (MAX-WINNERS) WDP where at mosk bid- Theorem 2.4 XORS isNP—compIete (Wh_ether or not the
ders receive items. seller has to sell all the items), even with integer prices.

Theorem 2.2 MAX-WINNERS ig\"P-complete (whether or PROOF. We reduce INDEPENDENT-SE[P] to XORS. Cor-
not the seller has to sell all the items), even with integerr€SPonding to each vertex, generate an item and a $1 bid

prices. for that item. Corresponding to each edge, inserixamr-
constraint between the bids. Now, XORS has a solution of $k
PROOF We reduce SET-COVEHRZ] to MAX-WINNERS.  iff there is an independent set of size O

Given an instance of set cover, namely, a ground’et - .
{1,2,...,m}, and a set of subsef§ = {8, S5, ..., S}, Theorem 2.5 Even if bids can be accepted partially, XORS

where S, C X. we formulate an instance of MAX- is N'P-complete (whether or not the seller has to sell all the
K3 = L]

WINNERS as follows. We create an itenfor each element items), even with integer prices.

in the ground seK. Corresponding to each s8t, we create  PROOF The proof of Theorem 2.4 applies. Whenever a

a bidderB;, who places a $1 bid on each item in the Sgt bid is partially accepted in an auction, it might as well be
We claim that there is a set cover of sizéf and only if ~ completely accepted since its neighbors are not accepted any-

the auction has a solution with revenweand max number way. O
of winnersk.
e [=] Consider a feasible solution for the auction. We 3 Combinatorial Bidding and Asking
claim that the sets corresponding to thevinning bid- | this section we define combinatorial auctions and multi-

ders form a set cover. (Thatis, if biddereceives atleast ynjt combinatorial exchanges. In the next section we show

one item, then we put the sét in the cover.) Since the oy side constraints affect the complexity of clearing these
revenue isn, each item must be awarded to some bidderyarkets.

and hence it must be covered by the set cover.

o [«] Consider a solution to the set cover. For each seB-1 Combinatorial Auctions
S; in the cover, we make biddéra winner. Since each In acombinatorial auction (CA)bidders may submit bids on
item is covered in the set cover, each item is bid upon bycombinations of items. This allows the bidders to express the
at least one bidder in the just constructed winning setfact that the value of a bundle of items may differ from the
but the item may be claimed by more than one winningsum of the values of the individual items that constitute the
bidders. However, since each bid is for the same pricebundle.
we can arbitrarily award the item to any of the winning

bidders claiming this item. This gives a solution to the Definition 5 (CAWDP) The auctioneer has a set of items,

. : o~ M = {1,2,...,m}, to sell, and the buyers submit a set of
gitacijtg)rr;]loroblem with revenue and number of winning bids, B = {31’32? L BuY A_bid is a tupleB, — (Sj,_pj>,
' where S; C M is a set of items ang;, p; > 0 is a

2Budget constraints occur naturally in markets, and they havérice. Thecombinatorial auction winner determination prob-

been studied from thigiddingperspective in the literature befdrd. lem (CAWDP)is to label the bids as winning or losing so



as to maximize the auctioneer’s revenue under the constrair@.3 Multi-Unit Combinatorial Exchanges

that each item can be allocated to at most one bidder: In a multi-unit combinatorial exchange, both buyers and sell-

n ers can submit combinatorial bids, and in one bid, a bidder

max Z pjz; St Z ;<1 i=12,....m might be selling units of some items and buying units of other
j=1 jli€s; items[10; 11].

If there is no free disposal (auctioneer is not willing to keepDeéfinition 11 (MUCEWDP) A bid in this setting isB; =
any of the items, and bidders are not willing to take extra((A},A?, AT, D), Where)\f € R is the requested number
items), an equality is used in place of the inequality. of units of itemk, andp; € R is the price. A positive\!
Definition 6 (BCAWDP) Binary CAWDP: CAWDP where represents buying and a negati))((f-ﬁ' means selling. A posi-
the decision variables are binaryf € {0,1}, i.e., each bid  tive p; represents bidding while a negatiye means asking.
has to be completely accepted or not at all). Themulti-unit combinatorial exchange winner determination

Even with free disposal and integer prices, BCAWDR/iB-  Problem (MUCEWDP]s to label the bids as winning or los-
Comp|etd:8], and |t cannot even be approximated toa ratio Of|ng SO as to maximize Surplus under the constraint that de-

n'=¢in polytime (unless® = A'P) [9]. mand does not exceed supply:
Definition 7 (CCAWDP) Continuous CAWDP: - o - i < .
CAWDP where the decision variables are continudus<s( JX_; pitj St JX_; Njgg 0 i=12,m

;< 1,ie.,bi ially). ) . -
s hle ’ b|.ds can be accepteq partially) o If there is no free disposal (buyers are not willing to take extra
CCAWDP is directly solvable by linear programming in poly- ynjts, and sellers are not willing to keep any units of their

time. WE"e facadergic reﬁeat\)r_ch on cIea.rin.g Co_mbi”at‘?riabvinning bids), an equality is used in place of the inequality.
auctions has focused on the binary cE&e9; 1; 10; 11; 15; Definition 12 (BMUCEWDP) Binary

3; 9], the currently biggest real combinatorial markets are JCEWDP: MUCEWDP where the decision variables are

continuous. For example, whéogistics.com auctions : : .
} ; ’ ; binary (z; € {0,1}, i.e., each bid has to be completely ac-
long-term trucking lanes (the volume of each lane is numercepted of not at all).

ous truck-loads), carriers can bid on combinations of lanes - ) )
and bids can be accepted partially. Also, in BandCon-  Proposition 3.2 BMUCEWDP is\'P-complete (with and
nect combinatorial bond exchange, bids can be accepteW'thOUF free dlsposal), even with integer prices and units. It
partially. is also inapproximable in polynomial time (unleBs= N'P).
32 Combi IR Aucti ProoFr BCAWDP is a special case of BMUCEWDP. O

’ o_m Inatoria ev'erse. uctions . Definition 13 (CMUCEWDP) Continuous
Next we introduce a combinatorial reverse auction. MUCEWDP: MUCEWDP where the decision variables are
Definition 8 (CRAWDP) The buyer wants to obtain a set continuous( < z; < 1, i.e., bids and asks can be accepted
of items,M = {1,2,...,m}, and the seI_Iers submit a set partially).
of asks,B = {Bi,B,,...,Bn}. Anaskis atupleB; =  CMUCEWDP is directly solvable by linear programming in
(Sj,p;), whereS; C M is a set of items angj, p; > 0 polytime.
is an asking price. Theombinatorial reverse auction win- . ) )
ner determination problem (CRAWDR)to label the asks as 3.4 Spanning the Spectrum of Combinatorial

winning or losing so as to minimize the buyer’s cost under the Market Designs
constraint that the buyer obtains each item: In the next section we analyze the complexity of winner de-
n termination under different side constraints. We present the
min Z pjzr; S.t Z z; >1 i=1,2,....m positive results in the context of the most general combinato-
i=1 jlies; rial market design (MUCEWDP). They therefore apply to all

.. special cases of it as well, such as CAWDP and CRAWDP.
Sve present the negative results in the context of CAWDP and

and sellers cannot keep any of the items of their winningop aypp. They therefore apply to all generalizations thereof
asks), an equality is used in place of the inequality. as well. such as MUCEWDP.

Definition 9 (BCRAWDP) Binary CRAWDP: CRAWDP _ o _ _
where the decision variables are binary;(€ {0,1}, i.,e., 4 Side Constraints in Combinatorial Markets

each ask has to be completely accepted or not at all). In this section we discuss how the complexity of clearing a
Proposition 3.1 BCRAWDP is\"P-complete, even with free  combinatorial market changes as different types of side con-
disposal. straints are imposed on the outcome. It turns out that different
PROOF BCRAWDP with free disposal is equivalent to side constraints introduce sharp cutoffs in the complexity of
weighted set covering, which j§P-complete. o clearing. Seemingly similar side constraints lead to problems
. . that lie on different sides of th® vs. N'P-complete cutoff.
Definition 10 (CCRAWDP) Continuous In the first subsection we present side constraints under which

CRAWDP: CRAWDP where the decision variables are conhg continuous case remains easy and the binary case remains

tinuous ) < x; < 1, i.e., asks can be accepted partially).  harq. In the next subsection we present side constraints that
CCRAWDRP is directly solvable by linear programming in make both cases hard. In the last subsection we present a side
polytime. constraint that make both cases easy.



4.1 Side Constraints under which the Continuous
Case Remains Easy, and the Binary Case
Remains Hard

The following classes of domain-independent side con-
straints, which we view as practically important and quite

general, turn out to be easy for the continuous winner deter- 6.

mination problem, and remain hard for the binary case. The

constraint classes may seem cumbersome. Thatis because we
focused on making them as general as possible. Each con-
straint class encompasses several types of simpler practical

constraints, as we will discuss via examples.
The constraints use the following terminology. Let the
net revenue (NR)f a set of bidsX be — Z].EX pjz; (bids

decrease NR, but asks increase NR because the prices arg

negative). Let thegross revenue (GR)f a set of bidsX

be > ;cx [pjlz; (both bids and asks increase GR). Let the

net units (NU)of a set of bidsX and set of items” be

Y jex Yiey N;z; (units bought increase NU but units sold

are negative, so they decrease NU). Letghess units (GU)
of a set of bidsX and set of item3” be ", v > .y [A}[z;

(units bought and sold increase GU). Roughly, the gross terms

8.

measure market share and the net terms measure property ob-
tained. The revenue terms measure these in money received,

while the unit terms measure these in goods received. On all

four terms, each player prefers a high value.

Maximum trade constraints:
1. MAX-SUBSET-NET-REVENUE: Of a certain set of

players), and a certain set of item$’ C M, NU < k.

This can be used, for example, to ensure that no buyer
gets an obscenely large number of units, or to guarantee
that a seller gets to sell at least a certain number of units
of some items.

%MAX-SUBSET-NET-UNITS: Of a certain set of bids

B' C B (for example, by a certain player or by a set
of players), and a certain set of item¢’ C M, NU
cannot exceed@% the NU of itemsM" C M from bid
setB” C B. This can be used, for example, to ensure
that no buyer gets an obscenely large fraction of units,
or to guarantee that a seller gets to sell at least a certain
fraction of units.

MAX-SUBSET-GROSS-UNITS: Of a certain set of bids
B' C B (for example, by a certain player or by a set
of players), and a certain set of item$¢’ C M, GU

< k. For example, this can be used in an exchange to
guarantee a maximum trading volume to a buyer, or a
minimum for a seller.

%MAX-SUBSET-GROSS-UNITS: Of a certain set of
bids B’ C B (for example, by a certain player or by a
set of players), and a certain set of item$ C M, GU
cannot excee&% of the GU of itemsM"” C M from

bid setB"” C B. For example, this can be used in an
exchange to guarantee a maximum fraction of trading
volume to a buyer, or a minimum for a seller.

bids B’ C B (for example, by a certain player or by a Minimum trade constraints:
set of players), NR< $k. For example, this can be used 1. Ananalogous MIN-constraintto each of the eight MAX-

to enforce that a seller does not get a net revenue that is

obscenely high (which could be considered out of line).

2. %MAX-SUBSET-NET-REVENUE: Of a certain set of
bidsB' C B (for example, by a certain player or by a set
of players), NR cannot exceddt of the NR from set
B" C B. A current large-scale real-world market that

runs combinatorial auctions has to guarantee that 30%
of the dollar value of the awarded bids goes to minority
bidders. This could be implemented using the %sMAX-
SUBSET-NET-REVENUE constraint (because revenues
of buyers are nonpositive). As another example, to main-
tain fairness, a buyer in a reverse auction may not want
any seller to get more than a certain fraction of the rev-
enue that the market generates.

3. MAX-SUBSET-GROSS-REVENUE: Of a certain set of
bidsB’ C B (for example, by a certain player or by a set
of players), GR< $k. This can be used, for example,
to guarantee that a certain class of buyers gets a certain
dollar volume of a market.

of bids B’ C B (for example, by a certain player or by a
set of players), GR cannot excelel of the GR from set

B" C B. This can be used, for example, to guarantee a
certain class of buyers a given percentage of the market
share. That allows the marketplace to enfatersity

on the buyer side, which may hedge against risks such
as failure to pay.

5. MAX-SUBSET-NET-UNITS: Of a certain set of bids
B' C B (for example, by a certain player or by a set of

1.

constraints above can be derived directly by turning
the inequality around. For example, a buyer with a
budget constraint is a special case of MIN-SUBSET-
NET-REVENUE. For a more general example of MIN-
SUBSET-NET-REVENUE, consider a firm that bids on
behalf of its different business units, and each business
unit has its own purchasing budget that cannot be ex-
ceeded. This would induce one constraint per business
unit. The MIN-SUBSET-NET-REVENUE constraint
can also be used to guarantee that a seller gets at least
a certain net revenue.

As another example, the %MIN-SUBSET-GROSS-
REVENUE constraint could be used to enforce that a
certain set of sellers gets at least a given fraction of the
market share. Placing such constraints allows the mar-
ketplace to enforceliversity on the seller side, which
may hedge against risks such as nondelivery. It could
also be used to guarantee that one player does not get
more than twice the volume of another player.

%MAX-SUBSET-GROSS-REVENUE: Of a certain set Minimum mutual trade constraints:

MUTUAL-TRADE: Set A of sellers of itemi must sell

to setB of buyers ofi at leastk units ofi. One of the
main arguments against dynamic pricing has been the
desirability of stable long-term business relationships
with trade volume guarantees. The MUTUAL-TRADE
constraint allows that concern to be incorporated into a
dynamically-priced marketplace. This enables the par-
ticipants to capture the advantages of both long-term
business guarantees and dynamic pricing.



2. WMUTUAL-TRADE: Set A of sellers of itemi must 4. EQUAL-SUBSET-GROSS-UNITS: Of a certain set of

sell to setB of buyers ofi at leastk% of the units of bids B’ C B (for example, by a certain bidder or by a
item ¢ sold by setC of sellers C' may be a subset of, set of bidders), and a certain set of ite$ C M, GU
a superset ofi, intersect withA4, or be disjoint fromA). equals the GU of another bid s8f C .

The motivation is the same as for MUTUAL-TRADE. . . . . .
(If C is the set of all sellers, then this constraint forcesStrict €quality constraints on trading volume:
a certain fraction of the trade on iteio be conducted 1. EQUAL-NET-REVENUE: Each bidder gets equal NR.

directly betweerd andB.) ® 2. EQUAL-GROSS-REVENUE: Each bidder gets equal

Minimum constraints on trading on all items: GR.
1. TRADE-ON-ALL-ITEMS: The items in sef’ C M 3. EQUAL-NET-UNITS: Each bidder gets equal NU on a

have to trade a total of at leasunits. given set of items\/’ C M.
2. % TRADE-ON-ALL-ITEMS: The items in set/’ C M 4. EQUAL-GROSS-UNITS: Each bidder gets equal GU on
have to trade a total of at leas¥% of the units traded of a given set of itemd/’ C M.
some other set of itemi%l" C M. Strict equality constraints on acceptance ratio:
MAX/MIN constraints on acceptance ratio: 1. EQUAL-NET-REVENUE-

ACCEPTANCE-RATIO: Every bidder gets awarded the
same ratio of the net revenue of her bids (NR / NR as if
all her bids got accepted).

1. MAX-SUBSET-ACCEPTANCE-RATIO: Of a certain
setB’ C B of bids and asks (for example, by a certain
bidder or by a set of bidders), at most a certain ratio can

(B.ep Ti 2. EQUAL-GROSS-REVENUE-ACCEPTANCE-RATIO:
£-<j|B;€EB ] .
be accepted——g— < k%. Every bidder gets awarded the same ratio of the gross
2. MIN-SUBSET-ACCEPTANCE-RATIO: Of a certain set feveng;a of her bids (GR / GR as if all her bids got ac-
cepted).

B’ C B of bids and asks (for example, by a certain bid-
der or by a set of bidders), atleast a certain ratio has to be 3. EQUAL-NET-UNITS-ACCEPTANCE-RATIO:  Ev-
accepted. This could be used to mitigate the frustration  ery bidder gets awarded the same ratio of the net units
of losing, and to induce more bidding. of her bids (NU / NU as if all her bids got accepted) on

; . ,
The remaining constraints are equalities. They are de- agiven set of itemsf’ C M.

signed to enforce strong forms of fairness among the market4. EQUAL-GROSS-UNITS-ACCEPTANCE-RATIO: Ev-

participants in terms of equitable allocation. The equalities ery bidder gets awarded the same ratio of the gross units

can be taken among buyers, among sellers, or across buyers of her bids (GU / GU as if all her bids got accepted) on

and sellers (and some players may both buy and sell—evenin a given set of itemd/’ C M.

the same bid). As is, comparing the net measures across buy—Inthe constraints above. when NR. GR. NU. and GU com-

ers and sellers only makes sense in a barter economy since . g
y Y risons are made, they are made within the same type (e.g.,

the net measures for those two sets generally have dlf“ferelﬁ\)fU against NU). The following theorems would apply to con-

signs. This can be generalized directly by comparing absoéﬁraints where comparisons are made across these types as

gjtelvigjﬁf a?zglsir;estvryeelﬁsures. The theorems in this SeC'['Owell (although we believe that such constraints are less likely
PPy ' to be of relevance in practice). Furthermore, they would ap-

General equality constraints on trading volume: ply to constraints on the difference between the gross and net

1. EQUAL-SUBSET-NET-REVENUE: Of a certain set of measures, as well as to constraints on the ratio of the gross
bids B’ C B (for example, by a certain bidder or by and net measures.
a set of bidders), NR equals the NR of another bid setrheorem 4.1 BCAWDP (and CRAWDP) with constraints
B" C B. from any of the classes presented in this sectionViB-

2. EQUAL-SUBSET-GROSS-REVENUE: Of a certain set complete (with and without free disposal), even with integer
of bids B’ C B (for example, by a certain bidder or by PriCes.
a set of bidders), GR equals the GR of another bid seproor By appropriately picking the parameters for the
B" C B. MAX and MIN constraints, they can be relaxed so they do not
3. EQUAL-SUBSET-NET-UNITS: Of a certain set of bids constrain the set of feasible allocations. BCAWDP with such
B' C B (for example, by a certain bidder or by a set of constraints is therefore rich enough to emulate BCAWDP it-
bidders), and a certain set of iteth8 C M, NU equals ~ Self, which is\"P-complete.
the NU of another bid sd8” C B. To see that BCAWDP with the equality constraintsi$-
- N complete, consider a CA with just one bidder. The equalities
®Under the mutual business constraints, the resulting allocatiodo not bind, but the problem still is weighted set packing,
ensures that it is possible to have the desired amount of trade bgyhich isNP-complete. O
tween A and B. However, the basic market mechanismonly says_
how much each party trades, not with whom. A postprocessor can “*These four constraints can sometimes be too strong in the sense
be used to enforce that the minimum desired amount of trade is corthat a player’s own bid can preclude the acceptance of some of her
ducted betweenrt and B directly. other bids because her bids share items.



Theorem 4.2 CMUCEWDP with constraints from any of the  The heart of the difficulty with the side constraints of this
classes presented in this section is polytime solvable (witlsection is that they would require a bid to be “counted” even
and without free disposal). if it is accepted only partially. As the theorems of this section

P Each traint f £ th | entail, such a counting device cannot be encoded into a linear
ROOF. Each constraint from any one of these classes ca rogram (of polynomial size) unleg® = A'P.

be modeled as one row (constraint) that is added to the linear

program (we skip these encodings due to restricted space, but3  Side Constraint under which the Continuous

they are not extremely hard to co'nstryct)l. The rgsultlng Im_ear and Binary Case Are Easy

program is therefore of polynomial size in the size of the in- . . . : . .

put. Linear programs can be solved in polynomial time in the®S W& show in this section, some side constraints restrict

size of the linear program (using interior point methods). the space of feasible allocations so dramatically that the win-
ner determination problem becomes easy even for the binary

4.2 Side Constraints under which the Continuous  ¢ase. Currently we are not aware of any constraints in this

and Binary Case Are Hard class that would be of great practical interest, but the follow-

) ) ) ing artificial constraint serves as an existence proof.
The most interesting results of this paper show that somLEa

classes of side constraints that are among the most importa tef'?'t'gn 14 (E)ETthE'\tAhE'EQUALr[Y). . E_ach bid and ask
ones from a practical perspective, make even the continuo § to be accepted to the same extéfjiz; =z.

caseNP-complete to clear. Theorem 4.5 CMUCEWDP and BMUCEWDP are polytime
Theorem 4.3 If no more thank winners are allowed solvable under EXTREME-EQUALITY (with and without free
' ' disposal).

BCAWDP and CCAWDP (as well as BCRAWDP and
CCRAWDP) areN'P-complete (with and without free dis- PRoOF The continuous case is directly solvable by linear
posal), even if prices are integer. programming. In the binary case, simply try accepting all

PROOF By Theorems 2.2 and 2.3, even the special cas@ffers & = 1) and rejecting therm(= 0). =

where the bids are all on singletons\i&P-complete. | e . .

In a combinatorial auction where the bids are combined® HYbridizing Combinatorial and
with OR, a bidder can only express complementarity, not sub- ~ Multi-Attribute Market Designs
stitutability. For example, say a bidder has submitted thre
bids: ({1}, $4), ({2}, $5), and({1,2}, $7). Now the auction-
eer can allocate items 1 and 2 to the bidder for $9. To allo
bidders to express any valuation 2M — {®, U0}, it was
proposed that bidders can submibr-constraints between
bids[9]. If two bids are combined with aroRr-constraint,
only one of them can wif. It turns out that in the contin-
uous case, there is an inherent tradeoff between the full e
pressiveness ofOR-constraints and computational complex-
ity (recall that in the binary case, CAWDP JP-complete
even withoutxOR-constraints):

%here are at least two reasons for introducing multi-attribute
techniques into (combinatorial) markets. First, in a basic auc-
Wion (or reverse auction or exchange), each item has to be
completely specified. In many settings, this is overly restric-
tive. It would be more desirable to leave some of the param-
eters of the items open, so that each player could propose in
her bids the most suitable parameter combinations for her,
%uch as delivery date, quality, insurance, etc. (each player
could also specify different parameter combinations in differ-
ent bids). This would avoid the problem of having to enumer-
ate alternative parameter combinations as separate items up
Theorem 4.4 If xOoR-constraints are allowed between bids, front. Second, a bid from one bidder can be more desirable
BCAWDP and CCAWDP (as well as BCRAWDP andthan the same bid from another bidder (e.g., due to historical
CCRAWDP) areNP-complete (with and without free dis- data on timeliness and quality of different bidders).

posal), even if prices are integer. Multi-attribute utility theory is a tool for handling trade-

offs between different attributes, and computerized imple-

PEOOF'th B)b/'dTheorerﬁ]s 2.4 aln? Z.Sii,rgsven thletspeciaID Ca8SHhentations of it for automated negotiation have been de-
where he bids are all on Singletonsis~-complete. veloped over the last 15 years (see, for examdlé; 16).
It follows that winner determination under the other fully Recently, several companies have been founded to com-

expressive bidding languages that have been proposed ffecialize that technologyFrictionless Commerce
combinatorial auctions (which are generalizations of thegj;gots

, Perfect , etc. However, to our knowledge,
XORS language) - OR-0of-XOREL0] and XOR-0f-ORS5] oy jitiattribute and combinatorial markets have not been hy-
- is N"P-complete even in the continuous case. The widel

: X ; Whridized in the literature so far. We propose a way to hybridize
advocated idea of expressing mutual exclusion among bid§,em so as to gain the advantages of both.

via dummy items that the bids shaik 5], does notlead to cqnsjder a (combinatorial) market design such as the ones

Sdiscussed in this paper so far. L&t be a vector of the ad-
@itional (non-price) attributes. Some of the attributes can
be specific to bidj while others might not (such as quality

5In addition to allowing full expressiveness to the biddersg- Of. a certain line of produc_:ts). The vector ik include at-
constraints can be a useful tool for the auctioneer. For example, théjibutes revealed by the bidder as well as attributes whose
can be used to encode that rival bidders cannot both be winners (§2lues the recipient gets from other sources such as historical
inserting anxoRr-constraint from each of the bidder's bids to each performance databases. We re-weight the bid prices based
of the rival's bids). on the additional attributes. The new price of any bits

case (because the dummy items may be partially allocated
different bids).



p'j = f(pj,a;). The re-weighting functiorf could be de-

termined by any party, but in most markets it would be set
by the recipient of the bids before he receives the bids (or irr5]
some cases even after, but this would, in general, affect the
bidders’ incentives). We then run the winner determination

in the (combinatorial) market using pricg's

Theorem 5.1 Whether or nop’ is used (for some of the bids) [6]

in the objective, and whether or npt is used (for some of
the bids) in the side constraints, théP-completeness and
polytime results of this paper still hold.

PrROOF The polytime result hold because any of thbased
coefficients can be changedifebased coefficients in the lin-

ear program. Th&/P-completeness results hold because th

special cas¢ (p;,a;) = p; is N'P-complete. O

6 Conclusions and Future Research

sl

In most real-world (electronic) marketplaces, there argg)
other considerations besides maximizing immediate eco-
nomic value. We presented a sound way of taking such con-
siderations into account via side constraints and non-price
attributes. Side constraints have a significant impact on the
complexity of clearing the market. Budget constraints, a limit

on the number of winners, andor-constraints make even
noncombinatorial market& P-complete to clear. The latter

two make marketd/P-complete to clear even if bids can be

(10

accepted partially. This is surprising since, as we showed,
even combinatorial markets with a host of very similar side
constraints can be cleared in polytime. An extreme equal-
ity constraint makes combinatorial markets polytime clear-
able even if bids have to be accepted entirely or not at all.
Finally, we presented a way to take into account additional
attributes using a bid re-weighting scheme, and proved that {t11]
does not change the complexity of clearing. All of the results
hold for auctions as well as exchanges, with and without free

disposal.

Future research includes analyzing the complexity entailed
by other side constraints. We also hope to design search algPIZ]

rithms that perform well on average &vP-complete clear-
ing problems that include side constraints.
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