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ABSTRACT
Proxy bidding has proved useful in a variety of real auction for-
mats, such as eBay, and has been proposed for combinatorial auc-
tions. Previous work on proxy bidding in combinatorial auctions
requires the auctioneer essentially run the auction with myopic bid-
ders to determine the outcome. In this paper we present a radically
different approach that computes the bidders’ allocation of their at-
tention across the bundles only at the inflection points. Inflections
are caused by the introduction of a new bundle into an agent’s de-
mand set, a change in the set of currently competitive allocations,
or the withdrawal of an agent from the set of active bidders. This
algorithm has several advantages over alternatives, including that it
computes exact solutions and is invariant to the magnitude of the
bids.

Categories and Subject Descriptors
F.2.2 [Theory of Computation]: Analysis of Algorithms and Prob-
lem Complexity; J.4 [Computer Applications]: Social and Behav-
ioral Science—Economics; K.4.4 [Computing Milieux ]: Comput-
ers and Society—Electronic Commerce

General Terms
Combinatorial Auctions, Proxy Bidding, Auction Algorithms

1. INTRODUCTION
Iterative Combinatorial Auctions are auctions that combine the ex-
pressive power of combinational bids with the progressive march
towards a solution common in iterative, single-item mechanisms
like the English auction (see [8] for an introduction). Iterative
combinatorial auctions are attractive for several reasons, but par-
ticularly because they require bidders to determine exact values on
items, or combinations of items, only if those items are relevant to
the final allocation. In cases where value determination is costly,
bidders need not compute the value of bundles that they do not ex-
pect to win in the auction.

Recently, mechanism designers have expressed interest in enabling

proxy biddingin iterative combinatorial auctions. Proxy bidding is
the process in which the bidder expresses a bid—typically greater
than strictly necessary to be accepted by the auction—to an agent
that then bids incrementally on behalf of the bidder until it either
wins or exhausts the authority granted it by the bidder. In a com-
binatorial auction, the bidder sends a message to the proxy that
expresses value for some or all of the bundles. The proxy bidder,
guided by the message, bids incrementally on behalf of the user by
following some prescribed bidding policy.

Proxy bidding has the advantage of speeding up the auction by al-
lowing bidders to place larger bids which will be executed only
to the extent necessary to outbid competitors [2, 9, 10]. Also, by
restricting the strategic flexibility of the bidders, mechanism de-
signers may be better able to design successful auctions and pre-
dict their outcomes. Indeed, Ausubel and Milgrom [2] show that a
semi-sincere equilibrium always exists under proxy bidding in their
Ascending Package Auction (APA).

In addition, enabling an auction with proxy bidding may reduce
the need for the bidders to accurately estimate the valuations of
the other participants in the auction. For example, an equilibrium
strategy in a first-price sealed-bid auction requires estimating the
value of the second highest bidder. However, when a first-price,
sealed-bid auction is enhanced with proxy bidding, as on eBay
when snipers bid at the end of the auction, it reduces to a Vickrey
auction and each bidder’s equilibrium strategy is to submit her true
value [11]. Iterative combinatorial auctions are more complex than
the English auction format used on eBay, and proxy bidding does
not necessarily produce the incentive compatibility property of the
Generalized Vickrey Auction (GVA). Nevertheless, there may be
many problems for which proxy bidding simplifies the bidders’
strategy selection problems, though we do not address strategic is-
sues in this paper.

Once the auction has collected the proxy bids, it must compute
the final prices and allocation entailed by the bids and the proxy
bidding policy. We refer to this task as solving theProxy Auction
Problem(PAP). A natural approach, which we refer to as solving by
simulation, is to instantiate the proxy bidders as algorithms that, us-
ing the bidders’ messages, incrementally bid until the winners and
prices are determined. Recently [13], we provided an alternative
algorithm that more directly computes the outcome of the auction
by computing the bidding patterns engendered by the proxy state-
ments, and the subsequent price trajectories. The previous version
of the algorithm provides the basic framework of the approach but
was limited by a simplifying assumption on the events that cause



changes in bidding behavior. In this paper, we relax that assump-
tion and present a technique that solves the general problem.

In the next section we define a simple combinatorial auction with
proxy bidding. Section 3 describes our novel algorithm for solving
PAP, with particular attention to the task of computing the bidders’
behavior. Section 4 walks through a portion of the calculations
necessary to solve the running example problem. The final section
contains observations on aspects of the algorithm and a discussion
of future work.

2. A SIMPLE COMBINATORIAL PROXY
AUCTION

We consider an iterative CA that accepts bids on bundles of items,
and generates non-linear bundle-prices, that is, the price of a bun-
dle may not be the sum of the prices of individual items. Several
proposed iterative combinatorial auctions fit into this category, in-
cluding various versions ofiBundle [7, 9], A1BA [14], and, with
some interpretation, APA [2]. The set of rules we employ here de-
fine a simplified iterative CA that combines aspects of the existing
proposals. The details of the auction format described in this pa-
per were chosen because of their natural interpretation within the
framework of the proxy solution algorithm.

The problem faced by the auctioneer is to allocaten heterogeneous
items tom buyers. LetJ be the set of items, andI be the set
of buyers, and index the sets withj andi, respectively. There are
2n different combinations of items, including the empty set,∅. Let
b ∈ {0, 1}n wherebj = 1 implies that itemj is an element of the
bundleb.

The auction proceeds in rounds, and in each round the buyers may
place offers on a subset of bundles. We denote buyeri’s bid at
roundt as a collection of mutually exclusive offers on bundles of
the formrt

i(b), wherert
i(b) ∈ R+,1 and we make the standard

assumption thatrt
i(∅) = 0. The auction remembers each bidder’s

last offer on each item.

It is convenient for our reduction to the algorithm for PAP to as-
sume that the bidding rules require that an agent either pass or im-
prove its bid on exactly one bundle by increasing it to the current
price plus a small increment,δ. This restriction could also be im-
plemented as part of the proxy agent’s bidding strategy.

After the bids are recieved, the auction computes the winning com-
bination of bids, a task called solving theWinner Determination
Problem(WDP). Algorithms for solving the WDP have been widely
studied in recent years [1, 3, 12]. At the end of each round the new
bundle-prices are announced and the auction tells the bidders which
bundles, if any, they are winning.

The announced prices are simply the highest bid received on a par-
ticular item and areanonymousin that all bidders are given the
same information. However, the prices are not necessarilyseparat-
ing [16] because the optimal allocation may include bidders whose
last offer on their winning bundle is less than the current price;
hence we need to directly inform bidders of their winning status.
Let πb denote the price associated with bundleb, and

πb = max
i

rt
i(b).

1This standard XOR format is fully expressive, although not the
most concise method of expressing bids [6].

In the proxy-enabled auction, the bidder submits to the proxy agent
a (not necessarily truthful) value statement,vi, that defines a will-
ingness to pay for some subset of bundles. The proxy agent sub-
mits the incremental bids,rt

i(b), on behalf of the user by following
a straightforward bidding policy[5]. If it is told by the auction
that it is winning, the agent does not increase its bid. Otherwise,
the agent bids on bundle,b′, that maximizes its real surplus at the
given prices,

b′ = arg max
b

{vi(b)− (πb + δ)} . (1)

whereδ is the minimum bid increment andπ is the set of an-
nounced bundle-prices. If more than one bundle satisfies (1), the
agent selects one randomly to bid on. We refer to the set of bundles
that satisfy (1) as the agent’sdemand set2 and denote itDt

i}.3

Note that agents will often reach a point at which no bundle pro-
vides positive surplus at the current prices. When this occurs, the
agent will stop bidding in the auction, though its most recent bids
remain. The auction terminates when no new bids are received in a
round.

We designate the auction defined by the combination of proxy bid-
ding and these simple rules as theSimple Combinatorial Proxy
Auction (SCPA). Given a set of value statements, the auctioneer
must now solve theProxy Auction Problem(PAP), that is, it must
compute the prices and allocation that result when all of the agents
follow straightforward bidding. A natural approach is to iteratively
compute incremental bids until the termination criteria is reached.
However, thissimulated biddingapproach has several undesirable
properties. First, the outcome is dependent upon implementation
details such as the tie-breaking rule, the order of bidding, and the
bid increment. In fact, the randomizations described in the SCPA
description were chosen to avoid biases and produce a consistent
outcome over a sufficient number of iterations. Second, the accu-
racy is a function of the bid increment. We can improve the ac-
curacy by decreasing the bid increment, but doing so will greatly
increase the number of iterations and the amount of time the pro-
cess takes. This is particularly undesirable because each iteration
requires the auction solve an NP-complete WDP and compute new
prices. Although some researchers [4] have begun looking at tech-
niques for reusing previous solutions in iterative combinatorial auc-
tions, the techniques are at an early stage of development.

We advocate a novel approach to solving PAPs rooted in the obser-
vation that the straightforward bidding policy generates predictable
patterns of bidding behavior that results in complex, but computable,
trajectories for bundle-prices. Figure 1 shows the trajectories taken
by prices when proxy agents bid in the SCPA with the valuations
shown in Table 1. The approach outlined in the next section allows
us to compute the results by taking large steps similar to the way a
proxy bid in eBay can directly be computed to jump toδ above the
second highest bid. Moreover, we can compute an exact outcome,
one that is independent of the bid increment or tie-breaking rules,
and whose run time is independent of the magnitude of the bids.

3. SOLVING PAP
3.1 Concepts
2The demand set is also referred to as abest response setin the
literature.
3For expository clarity, we leave thet superscript off the symbols
when it is not ambiguous.



A B AB C AC BC ABC
Buyer 1 10 3 18 2 18 10 20
Buyer 2 4 9 15 3 12 18 20
Buyer 3 1 3 11 9 16 17 25
Buyer 4 7 7 16 7 16 16 20

Table 1: An example with four buyers bidding on the combina-
tions of three objects.

In the framework we presented previously [15], the central con-
cept was to compute each bidder’s allocation ofattentionamong
the bundles. Attention represents the proportion of its bidding op-
portunities the agent will use to increase its offer on a bundle. We
denote agenti’s attention to bundleb asθi,b. If the agent is told
it is winning by the auctioneer, it will pass. Denote the proportion
of time agenti spends passing asθi,pass. Each agent has one unit
of attention per unit of time to allocate among the bundles and the
passing action. Attention could also be thought of as dollars per
unit time; for the purposes of this exposition we will use a normal-
ized value of one dollar per unit time.

Figure 1 shows the progression of the price of each bundle through
the course of the proxied auction with the agents given buyer values
as shown in Table 1. It should be noted that both the simulation—
whenδ is sufficiently small—and our new algorithm generates the
price curves in the figure. The figure has obvious structure: prices
increase at steady rates with occasional events that cause them to
change trajectories.

The trajectory of a bundle is simply the sum of the attention being
paid to it. If during a unit of time, three agents each give half their
attention to bundleb, the price ofb will increase by 1.5. In Figure 1,
at time zero, every agent’s demand set is the singleton ABC so they
spend their attention outbidding one another. However, although
the price of ABC initially increases rapidly, it does not increase
at slope of 4. The bidding pattern that is established during the
initial period has one (randomly selected) bidder passing because
it is announced as the winner of ABC, and the other three bidders
increasing their bids. Thus, each agent has a .25 probability of
being announced as the winner during any given round, and a .75
probability of increasing its bid because it is not winning. Four
agents bidding with .75 units of attention creates the slope of 3
seen in the first 2/3 of a time unit in Figure 1. Letθt

b, the trajectory
of bundleb at timet, be computed as

θt
b =

X
i

θt
i,b.

In order to correctly determine the price trajectories, the algorithm
must keep track of thecompetitive allocations(CAs) as well as the
allocation of attention to the demand sets. In the first 2/3 of a time
unit in the example there are four CAs:{ABC,-,-,-}, {-,ABC,-,-
,}, {-,-,ABC,-,}, and{-,-,-,ABC}, using a lexical ordering of the
agents. Competitive allocations are simply solutions to the WDP.

More formally, letf denote a feasible allocation of the objects, that
is, f : J → I. Let F be the set of all feasible allocations. Denote
agenti’s allocation inf asf i. The value of allocationf at timet
is

V (f) =
X

i

rt
i(f i). (2)

Let F ∗ denote the set of allocations that maximize (2).

The CA notion is critical because agents will pass if and only if
they are a member of a CA, and they will pass as often as a CA
to which they belong is selected by the auctioneer. The values of
the CAs that are managed by the proxy algorithm in the example
are depicted in Figure 2. The CAs on the envelope are competitive.
Notice that the four allocations in which ABC is allocated begin as
CAs, but at time 2/3 the allocation{ABC,-,-,-} flatlines and agent 1
does not bid on ABC again during the duration of the auction.{-
,ABC,-,-,} and {-,-,-,ABC} also flatline when the price of ABC
reaches 11 and 14, respectively. The allocation that eventually wins
the auction,{A, BC, -,-}, does not even become competitive until
around time 17, and remains on the envelope until time 40 at which
the bidders supporting{-,-,ABC,-} and{-,-,C,AB} give up.

The proxy solution algorithm is an iterative process in which each
step involves (1) computing the allocation of attention, and (2)
computing the duration for which the the former holds. In the
following sections, we deal with these two issues in more detail,
starting with the latter.

3.2 Computing Intervals
We use the same methodology to compute the duration of an inter-
val described elsewhere [15], but here extend it to the general case.
There are two potential events that define the end of an interval:

1. the prices of bundles reach a point where one or more bid-
ders become attracted to one or more bundles that were not
previously in their demand sets, or

2. a allocation that was not formerly competitive reaches a value
that makes it competitive.

Unlike our previous work, we do not restrict these events to consist
of a single allocation or a single agent and bundle. The complexity
that arises when we lift this restriction is dealt with primarily in the
next section.

To establish the duration of the interval starting at timet, we need
the first change in demand sets among all agents; the trajectories
will change at the inflection point, rendering the other computed
collisions obsolete. The amount of time it will take forc to become
as attractive toi asb is

∆tb,c
i =

vi(b)− πt
b − vi(c) + πt

c

θt
b − θt

c
. (3)

Note that cases where∆tb,c
i is negative or undefined indicate that

the two trajectories do not collide in the future because they are
diverging or parallel. Such pairs are excluded.

The duration of time until the next demand set change is

∆tDS = min
i
{ min

b∈Dt
i ,c 6∈Dt

i

∆tb,c
i } (4)

Similarly, we need to compute the first allocation that will become
competitive under the current allocation of attention. First, recog-
nize that the trajectory of an allocation is the sum of the trajectories
of the components that are actively being bid upon. Letγt

f be the
trajectory off , computed as

γt
f =

X
i|fi∈Dt

i

θt
fi

.
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Figure 1: The prices over time when proxy agents bid on the example in Table 1.
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Figure 2: The values of the competitive allocations for the example in Table 1.



Competitive allocation,f , will collide with non-competitive allo-
cation,f̂ , when the values of the two become equal. If the current
time ist, the collision will occur in∆tf ,f̂ time increments, where

∆tf ,f̂ =
V t(f̂)− V t(f)

γt
f − γt

f̂

. (5)

As in the computation of collisions in Section 3.3, a non-positive
value for∆tf ,f̂ means that, with the current allocation of atten-
tion, f̂ will not become competitive withf . Finally, among the
positively valued∆tf ,f̂ ’s,

∆tCA = min
f∈F∗,f̂ 6∈F∗

∆tf ,f̂ . (6)

The next inflection point is determined by taking the minimum of
∆tDS and∆tCA. In addition, we keep track of which allocations
and combinations of agents and bundles triggered the inflection
point.

3.3 Computing the Allocation of Attention
The main contribution of this paper is in defining how to compute
the allocation of attention in the general case where an arbitrary
number of bundles are added to demand sets or several allocations
become competitive. The assumptions made in the original formu-
lation of the algorithm [13] allowed us to simplify the maintenance
of the demand set information at the inflection points. In the gen-
eral case, when we add a set of bundles to the agents’ demand sets,
bundles that were previously in the demand sets may be dropped.
It is necessary to determine which bundles are dropped in order to
establish which allocations will remain competitive.

This section details a mixed integer-linear program (MILP) that si-
multaneously computes which allocations remain competitive, which
bundles should be kept in the demand set for each agent, and how
much attention each agent allocates to each item in its demand set.
The domain of the MILP is defined by thepotentialdemand sets
and thepotentialcompetitive allocations. Although all of the iden-
tified bundles and allocations are instantaneously active at the in-
flection at timet, we are concerned with determining which will
remain active going forward.

The potential demand set for each agent is the union of the bun-
dles that were previously in the agent’s demand set and those bun-
dles being introduced by the agent at this inflection point; in other
words, the set of bundles that satisfy (1) at timet. The potential
CA set,F ∗, is the union of the previous CAs and those allocations
being introduced at this inflection point; no allocation can become
competitive without being the cause of the inflection.

The integer variableyi,b takes the value 1 if bundleb will remain
in agenti’s demand set during the following interval, and zero oth-
erwise. The integer variablexf takes the value one if allocation
f will remain competitive during the interval, and zero otherwise.
Let N be a sufficiently large constant.

It is clear that∀i ∈ I,

yi,b ≥ θi,b, ∀b ∈ Di (7)

yi,b ≤ Nθi,b, ∀b ∈ Di (8)

θi,b = yi,b = 0, ∀b 6∈ Di.

The straightforward bidding policy that each agent implements im-
plies that if bundlesb andc are both inDi over an interval,θb =
θc. It follows that whenyi,b = 1

if yi,c = 1, then θb = θc,

if yi,c = 0, then θb ≤ θc.

Expressed as integer constraints,∀i ∈ I, b, c ∈ Di,

θc − θb + Nyi,b + Nyi,c ≤ 2N, (9)

θc − θb + Nyi,c −Nyi,b ≤ N. (10)

Active agents have one unit of attention to allocate, while agents
that no longer achieve positive surplus on any bundle (and therefore
have empty demand sets) will allocate no attention. LetKi be a
constant used during problem construction whereKi = 0 if Di

is empty, andKi = 1 otherwise. We conserve attention with the
constraint X

b∈B

θi,b + θi,pass = Ki, ∀i ∈ I. (11)

We now turn our attention to the constraints that capture the influ-
ence of the competitive allocations. Letβf ∈ [0, 1] be the fre-
quency with which allocationf is announced as the winner, en-
abling the members of that allocation to pass. At every iteration,
one of the CAs must be announced as the winning bundle. Thus,X

f∈F∗

βf = 1. (12)

If allocationf is not competitive thenβf = 0. In other words,

βf ≤ xf . (13)

An allocation cannot be competitive unless at least one agent is
actively bidding on it.

xf ≤
X
i∈f

yi,fi
,∀f ∈ F ∗ (14)

By definition, competitive allocations increase their value at the
same rate, while if a potential CA turns out to be not competitive,
its slope must be less than those allocations that are competitive.
Consider the case wheref is competitive, that is,xf = 1.

If xf̂ = 1, then γf = γf̂ ;

if xf̂ = 0, then γf ≥ γf̂ .

A MILP form of this logical constraint is

γf̂ − γf + Nxf + Nxf̂ ≤ 2N, (15)

γf̂ − γf −Nxf + Nxf̂ ≤ N. (16)

Every competitive allocation will have some probability of being
selected as the winning allocation. Letβf be the frequency with
which the auctioneer selects solutionf . It is not true that all com-
petitive allocations are selected equally often during an interval;
they are only equally likely to be chosen when they are tied. Con-
sider the bidding pattern in a two-agent, two-item scenario where
Agent 1 is bidding only on AB, and Agent 2 is alternating between
bidding on A and bidding on AB. In those rounds in which Agent 2
bids on A,{-, AB} is the only CA. In the alternate rounds, Agent 2
may increase its bid on AB, thereby tying Agent 1 and having a



0.5 probability of being declared the current winner. Thus, Agent 2
will bid on A half the time, on AB a quarter of the time, and pass
the remaining quarter of the time.

This analysis suggest a connection between agenti’s behavior and
the frequency with whichi is not a member of the winning alloca-
tion. Agenti bids whenever one of the other competitive alloca-
tions pass. We employ another constant that is used during prob-
lem construction: letGf ,i = 1 if i is allocated a bundle inf , and
Gf ,i = 0 otherwise.

1− θi,pass =
X

f∈F∗

(1−Gf ,i)βf . (17)

The final piece of the MILP is the objective function. We take
as our objective the maximization of the number of competitive
allocations.

maximize
X
f∈

xf .

Solving the MILP outlined above will compute the bundles that
are in each agents best response set going forward (those that have
yi,b = 1), which allocations will be competitive (those for which
xf = 1), and how much attention each agent pays to each bundle
in its demand set. From the attention we can compute the slope of
the price of each bundle and the slope of the allocations, both of
which are necessary to determine the duration of the interval. The
complete MILP is shown in Figure 3.3.

4. WORKED EXAMPLE
The result of applying the algorithm to the example in Table 1 is
shown in Figure 1. In this section, we highlight some of the steps
in the process for expository purposes. Table 2 shows the computa-
tions involved at six of the ten steps involved in solving the auction.
Each step shows the prices at the designated time, the potentially
competitive allocations (with those that remain competitive in the
interval designated with an asterisk), each agent’s potential demand
set, and each agent’s allocation of attention. The attention columns
are summed to give the trajectories of the prices going forward.

At t = 0, the prices are zero and ABC is the sole element in each
agent’s demand set. Since there are four CAs, and no other bundles
distracting the bidders, each CA wins one fourth of the time. At
time 2/3, the bundles AB and AC enter Agent 1’s demand set, and
BC enters Agent 2’s. Both agents focus their attention on the new
elements, although ABC remains in Agent 2’s demand set even
though the agent allocates no attention to it because the slope of
ABC matches the slope of BC.

We then skip to step 7 where we see a complex allocation of atten-
tion across the bundles, yet one that continues to satisfy the con-
straints of the problem and exactly matches the simulation pattern.
It is also interesting to note that the inflection at step 7 is caused by
the allocation{A, BC, –, –} entering the CA set. The effect of this
is clearly visible in Figure 2. At step 8, we see an interesting effect
when BC enters Agent 4’s demand set. The price of BC at the time
is 15, so when Agent 4 suddenly joins the bidding, the allocation
{A, –, –, BC} suddenly becomes competitive, as seen by the dra-
matic rise in its value. At step 9, we have our first agent drop out
because no bundles provide positive surplus, and we see another in-
flection caused by the allocation{–, –, C, AB}. It is also interesting
that the new competitive allocation includes Agent 4 even though

it has stopped bidding. At step 11, Agent 3 drops out when it can
no longer achieve positive surplus, and the allocation{A, BC, –, –}
wins the auction.

5. DISCUSSION AND FUTURE WORK
Aside from research on algorithms to solve singular instances of the
WDP [1, 3, 12], there is little research that studies the computation
over the life of an iterative combinatorial auction. One exception
is the recent work by Kastner, et al. [4], in which the authors study
the costs of maintaining previous solutions to the WDP as bidders
incrementally increase their bids. While relevant to scenarios in
which bidders have unconstrained bidding strategies, when proxy
bidding is allowed, maintaining previous solutions to the WDP is
unnecessary given the algorithm outlined in this paper.

We intend to continue with this line of research and to expand the
framework to encompass the other auctions in the literature. For ex-
ample, the SCPA presented in this paper differs from the Ausubel
and Milgrom’s APA mechanism [2] principally in the amount of
attention agents are permitted to allocate. In APA, the bidders raise
their offer onall elements of their best-response set, whereas in
our mechanism the bidder randomly selects one element of its de-
mand set on which to bid. We feel there is a strong correspondence
between SCPA and A1BA [14], and posit that A1BA’s distinctive
method of price determination can be appliedex-post. We would
like to try to represent at least the anonymous price variations of
iBundle [7] in the framework, and it may be possible to capture the
discriminatory mechanisms.

We also plan to study the computational complexity of the process.
We expect the MILP to be NP-complete, and at least as hard as
the WDP. While we clearly benefit by solving for a limited number
of inflection points, the value of the overall approach will depend
upon how much harder it is to compute the allocation of attention
than to solve the WDP. At the same time, we have made no effort
yet to improve the tractability of the problem, and our experience
so far suggests that there are many ways in which to improve the
computational costs. For example, we described the interval com-
putations as a comparison between all combinations of elements in
a set with those not in the set. With some clever bookkeeping, a
much smaller number of comparisons need to be made. There are
also obvious ways in which a computer program could avoid cre-
ating some instances of the constraints in the MILP. Because these
optimizations obfuscate the central ideas in the approach, we left
them out.
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max
P

f∈F∗
xf

s.t. yi,b ≥ θi,b, ∀i ∈ I, b ∈ Di

yi,b ≤ Nθi,b, ∀i ∈ I, b ∈ Di

P
i∈I

θi,b −
P
i∈I

θi,c + Nyi,b + Nyi,c ≤ 2N, ∀i ∈ I, b, c ∈ Di

P
i∈I

θi,b −
P
i∈I

θi,c + Nyi,b −Nyi,c ≤ N, ∀i ∈ I, b, c ∈ Di

βf ≤ xf , ∀f ∈ F ∗

xf ≤
P
i∈f

yi,fi
, ∀f ∈ F ∗

P
f∈F∗

βf = 1

P
i∈I

P
j∈I

θj,fi −
P
i∈I

P
j∈I

θj,f̂i
+ Nxf + Nxf̂ ≤ 2N, ∀f, f̂ ∈ F ∗

P
i∈I

P
j∈I

θj,fi −
P
i∈I

P
j∈I

θj,f̂i
−Nxf + Nxf̂ ≤ N, ∀f, f̂ ∈ F ∗

(1− θi,pass) =
P

f∈F∗
(1−Gf ,i)βf ∀i ∈ I

θi,pass +
P

b∈B
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θi,b ≥ 0, yi,b ∈ {0, 1}, ∀i ∈ I, b ∈ Di

Figure 3: The complete mixed-integer program for computing the allocation of attention in the proxy auction.
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Step 1,t = 0 Prices: 0 0 0 0 0 0 0
f |V (f) = 0 Agent Di A B AB C AC BC ABC pass

*{ABC, –, –, –} 1 ABC 0.75 0.25
*{–, ABC, –, –} 2 ABC 0.75 0.25
*{–, –, ABC, –} 3 ABC 0.75 0.25
*{–, –, –, ABC} 4 ABC 0.75 0.25

θb 0 0 0 0 0 0 3

Step 2,t = 2/3 Prices: 0 0 0 0 0 0 2
f |V (f) = 2 Agent Di A B AB C AC BC ABC pass
{ABC, –, –, –} 1 AB, AC, ABC 0.5 0.5
*{–, ABC, –, –} 2 BC, ABC 1
*{–, –, ABC, –} 3 ABC 0.5 0.5
*{–, –, –, ABC} 4 ABC 0.5 0.5

θb 0 0 0.5 0 0.5 1 1
...

...
...

Step 7,t = 17 1
3

Prices: 2 3 10 1 10 12 14
f |V (f) = 14 Agent Di A B AB C AC BC ABC pass
*{A, BC, –, –} 1 A, AB, AC 5/14 1/14 4/7
{–, ABC, –, –} 2 B, BC 3/14 3/14 4/7
*{–, –, ABC, –} 3 ABC 4/7 3/7
{–, –, –, ABC} 4 AB, C, AC, ABC 5/14 5/14 4/14

θb 5/14 3/14 5/14 5/14 5/14 3/14 4/7

Step 8,t = 31 1
3

Prices: 7 6 15 6 15 15 22
f |V (f) = 22 Agent Di A B AB C AC BC ABC pass
*{A, BC, –, –} 1 A, AB, AC 1/7 6/7
*{A, –, –, BC} 2 B, BC 1/7 1/7 5/7
*{–, –, ABC, –} 3 C, ABC 3/7 3/7 1/7

4 B, AB, C, AC, BC 1/7 2/7 2/7 1/7 1/7
θb 1/7 2/7 2/7 3/7 2/7 2/7 3/7

Step 9,t = 34 5
6

Prices: 7.5 7 16 7.5 16 16 23.5
f |V (f) = 23.5 Agent Di A B AB C AC BC ABC pass
*{A, BC, –, –} 1 A 1/4 3/4
{A, –, –, BC} 2 B, BC 1/8 1/8 3/4

*{–, –, ABC, –} 3 C, ABC 3/8 3/8 1/4
*{–, –, C, AB} 4 ∅

θb 1/4 1/8 0 3/8 0 1/8 3/8

Step 10,t = 36 5
6

Prices: 8 7.25 16 8.25 16 16.25 24.25
f |V (f) = 24.25 Agent Di A B AB C AC BC ABC pass
*{A, BC, –, –} 1 A, AB, AC 1
{A, –, BC, –} 2 B, BC 1/4 1/4 1/2

*{–, –, ABC, –} 3 C, BC, ABC 1/4 1/4 1/2
*{–, –, C, AB} 4 ∅

θb 0 1/4 0 1/4 0 1/4 1/4

Step 11,t = 39 5
6

Prices: 8 8 16 9 16 17 25
Agent 3 stops bidding and the allocation{A, BC, –, –} wins.

Table 2: Some of the steps in the computation of the auction result for the example in Table 1. Asterisks indicate which of the
potential CAs are determined to be competitive.


